2017年厦门大学天文系820量子力学考研仿真模拟题
● 摘要
一、简答题
1. 在量子力学中,能不能同时用粒子坐标和动量的确定值来描写粒子的量子状态?
【答案】不能。因为在量子力学中,粒子具有波料二象性,粒子的坐标和动量不可能同时具有确定值。
2. 反常塞曼效应的特点,引起的原因。 【答案】原因如下:
(1)碱金属原子能级偶数分裂; (2)光谱线偶数条;
(3)分裂能级间距与能级有关;
(4)由于电子具有自旋。
3. 分别说明什么样的状态是束缚态、简并态与负宇称态?
【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。
4. 电子在位置和自旋表象下,波函数【答案】
利用
的几率密度;
表示粒子在
如何归一化?解释各项的几率意义。
进行归一化,其中
:
处
的几率密度。
表示粒子在
|
处
5. 有人说“在只考虑库仑势场情况下,氢原子原有本征态都存在实的轨道波函数”,你是否同意这种说法, 简述理由。 【答案】不同意。因为
为实函数,但
可以为复函数。
6. 写出由两个自旋态矢构成的总自旋为0的态矢和自旋为1的态矢。 【答案】总自旋为0:总自旋为1:
7. 试比较粒子和波这两个概念在经典物理和量子力学中的含义。
【答案】对于粒子,共同点是颗粒性,即是具有一定质量、电荷等属性的客体;不同点是经典粒子遵循经典决定论,沿确定轨道运动,微观粒子不遵循经典决定论,无确定轨道运动。 对于波,共同点是遵循波动规律,具有相干迭加性;不同点是经典波是与某个客观存在的物理量的周期性变化在空间中的传播相联系的量子力学中的物质波不存在这样的物理量,它只是一种几率波。
8. 自旋可以在坐标表象中表示吗?
【答案】自旋是内禀角动量,与空间运动无关,故不能在坐标空间表示出来。
9. 以能量这个力学量为例,简要说明能量算符和能量之间的关系。 【答案】在量子力学中,能量
用算符表示,
当体系处于某个能量态
的作用是得到这一本征值,即
当体系处于一般态
的本征态
时,算符对
的作
时,算符对态
,即用是得到体系取不同能量本征值的几率幅(从而就得到了相应几率)
10.现有三种能级【答案】一维谐振子.
请分别指出他们对应的是哪些系统。
对应一维无限深势阱;
对应中心库仑势系统,例如氢原子;对应
二、计算题
11.—个电子在沿正Z 方向的均匀磁场B 中运动(只考虑自旋),在t=0时测量到电子自旋沿正X 方向,求在t >0时的自旋波函数以及的平均值. 【答案】
在
表象下,
由
可以解得
:
其中
时态矢为:
分别为朝上和朝下时的波函数.
即t=0
时刻电子自选波函数
电子由于自旋产生的能量对应哈密顿量为:故
状态为的本征态,对应本征值为:
t >0时刻电子自旋波函数应为
写成矩阵形式,即
而
平均值为
12.算符
相应的本征矢在表象中的表示。 【答案】因为
如
所以,它的本征值为
则
故
是电子自旋算符经么正变换而得。试求出它的本征值和
相应的本征值在表象中的表示:
本征值为本征表示为
本征值为
本征表示为
相关内容
相关标签