2017年厦门大学天文系820量子力学考研题库
● 摘要
一、简答题
1. 写出电子在外电磁场【答案】
中的哈密顿量。
2. 分别写出非简并态的一级、二级能量修正表达式。 【答案】
3. 描写全同粒子体系状态的波函数有何特点?
【答案】描写全同粒子体系状态的波函数只能是对称的或者反对称的,它们的对称性不随时间变化。
4. 斯特恩—革拉赫实验证明了什么? 【答案】(1)半整数内禀角动量在存在。 (2)空间量子化的事实。
(3)电子自旋磁矩需引入2倍关系。
5. 扼要说明:
(1)束缚定态的主要性质。
(2)单价原子自发能级跃迁过程的选择定则及其理论根据。
【答案】(1)能量有确定值。力学量(不显含f )的可能测值及概率不随时间改变。 (2)选择定则:
理论根据:电矩m 矩阵元
6. 试表述量子态的叠加原理并说明叠加系数是否依赖于时空变量及其理由. 【答案】量子态的叠加原理:若仍然为粒子可能处于的态.
叠加系数不依赖于时空变量. 因为量子态的叠加原理已经明确说明了是任意线性组合,即表明了叠加系数不依赖于任何变量.
7. 能级的简并度指的是什么?
【答案】能级简并度是指对应于同一能量本征值的线性无关的本征态个数。
第 2 页,共 36 页
为粒子可能处于的态,那么这些态的任意线性组合
8. 波函数么?
是用来描述什么的?它应该满足什么样的自然条件?的物理含义是什
【答案】波函数是用来描述体系的状态的复函数,除了应满足平方可积的条件之外,它还应该是单值、有限和连续的。表示在时刻附近体积元中粒子出现的几率密度。
9. 量子力学中的可观测量算符为什么应为厄米算符?
【答案】实验上可以观测的力学量的平均值必须为实数,而体系在任何量子态下平均值为实数的算符必为厄米算符,因此这要求可观测量算符应为厄米算符。
10.已知为一个算符满足如下的两式么正算符?
【答案】满足关系式(a )的为厄密算符,满足关系式(b )的为幺正算符。
问何为厄密算符?何为
二、计算题
11.平面转子的转动惯量为I ,设绕z 轴转动,受到态能量的一级近似。
【答案】受到微扰之前,系统波函数为对于所有激发态能级,其简并度为二.
设容易得到则
于是有方程
再由久期方程
解得:
对应零级近似波函数为
对应能量为
的微扰作用,求体系激发定
故体系激发态定态能量的一级近似为:
即能级简并消失了,每个激发态能级都分裂成了两个能级。
第 3 页,共 36 页
12.设一维简谐振子的初始(t=0)波函数为
为简谐振子的三个(n=0, 1,2)最低能量的定态波函数. 试求 (1)系数A = ? (2)t 时刻的波函数(3)t 时刻的能量平均值.
【答案】(1)由波函数的正交归一化条件有
故
其中
(2) —维谐振子能量为故
t 时刻波函数为
(3)
各自对应概率为
7
均与时间无关,故t 时刻粒子能量平均值为
13.考虑一维双势阱:
(1)推导在x=a处波函数的连接条件. (2)对于偶宇称的解,即征值的数目.
【答案】(1)薛定谔方程可表示为
OT 为粒子质量,
为方程的奇点,在x=a
点处
对上述方程积分
得出
第 4 页,共 36 页
其中
求束缚态能量本征值满足的方程,并用图解法说明本
不存在,表现为不连续。