2017年山东科技大学交通学院847运筹学考研冲刺密押题
● 摘要
一、简答题
1. 试写出求解最短径路的Dijkstra 算法的步骤。
【答案】Dijkstra 算法的步骤为:
(l )给v s 以p 标号,P (v S )二0,其余各点均给T 标号,T (v i )=+∞。
(2)若v i 点为刚得到P 标号的点,考虑这样的点v i ,(v i ,vj )属于E ,且v i 为T 标号。对v j 的T 标号进行如下修改:T (v j )=min[T(v i ),p (v i )+lij ]
(3)比较所有具有T 标号的点,把最小者改为P 标号,即: 当存在两个以上最小者时,可同时改为P 标号。若全部点均为P 标号时停止,否则用代V i 转回(2)。
2. 考虑一个(线性)目标规划在计算机上求解的问题。假设手头只有一个线性规划的求解软件,想要仅仅 借助该软件来实现对目标规划的求解,请问你的策略是什么(不超过200字)?
【答案】想要仅仅借助该软件来实现对目标规划的求解,则应按如下步骤进行。
先以第一级目标为目标函数,以原来的约束为约束,求解一个线性规划; 其次,将己经实现的第一个目标作 为一个附加约束,以第二级目标为目标函数,再求解一个线性规划。以此类推,逐
,即可求出目标规划的满意解。 次求解k 个线性规划(k 为优先级的个数)
3. 什么是启发式方法? 说明用启发式方法解决实际问题的过程和步骤。
【答案】(1)对于结构不良问题,为得到近似可用的解,分析人员必须运用自己的感知和洞察力,从与其有关而 较基本的模型与算法中寻求其间的联系,从中得到启发,去发现适于解决该问题的思路和途径,这种方法称为启 发式方法。
(2)用启发式方法解决实际问题的过程和步骤:①系统观察和分析实际问题; ②抽象并明确提出问题; ③ 建立启发式数学模型; ④选择启发式策略,设计启发式方法,按照一定的搜索规则反复迭代逼近模型最优可行解,直到得到满意解; ⑤检验和修正模型及其满意解。
4. 说明本书所述货运车辆优化调度算法的原理和求解步骤,并绘出求解过程框图。请简要回答以下问题。
(1)若有两种车型的车可用,书中提出的模型应怎样修改? 在书中所提算法的启发下,试拟定出一套求解的迭代步骤。
(2)你认为应如何将书中提出的模型和算法推广到多目标的情形。
【答案】①货运车辆优化调度算法的原理:最小费用最大流原理。求解步骤为:a. 仅考虑重载点,运用表上作业法求出最优解作为原问题的可行解; b. 进行解的扩展和解的收缩,直至得到可接受的可行解; c. 以该可接受的可行解为依据确定初始行车线路; d. 根据具体约束条件进行调整,直至得到最优行车路线。求解过程框图如图所示。
图
(2)修改后的迭代算法即神经网络(neural networks)算法。
①建立结合矩阵:将车辆经过的点包括源点看成神经网络的结点,即神经元,令神经元数目为Ni 神经元 和j 神经元的结合权值为,j 神经元的输出为r j 。
②将车辆调度的各种约束条件转化为约束能量函数为E 约。
,且r i (t )只能取0或1,令神经元i 的阈③神经网络计算:令时刻t 神经元i 的输出为r i (t )
值为Q i ,则输出能量
为
,其中,因此总的能量函数
为,则该网络相对处于稳定状态。由于如
果,且E 有界,系统必
趋向一个比较好的稳定状态,再把此稳定状态时r i (t ) 形成换位阵中元素为l 的结点连接起来,形成所求的最满意车辆调度线路。
④根据所形成的最满意线路来选择车辆调度方案。
(3)推广到多目标情形:车辆优化的目标函数可以有很多个,如总运费最小,司机总的驾驶时间最短,车 辆满载行驶的时间最长等; 而约束条件,如路径的最大输入输出流、车载量、发车和收车约束等。也可以加入惩 罚算子将约束条件转化为惩罚函数,利用多目标方法进行求解。
二、计算题
5. 用破圈法和避圈法求下图的一个支撑树。
【答案】(l )用破圈法求解,求解过程如下。
,去掉其中一条边,如e 2=[v1,v 3]; ①取圈(v 1,v 2,v 3)
,去掉其中一条边,如e 7=[v1,v 5]; ②取圈(v 1,v 2,v 5)
,去掉其中一条边,如e 3=[v2,v 3]; ③取圈(v 2,v 3,v 4)
,去掉其中一条边,如e 5=[v2,v 5]; ④取圈(v 2,v 4,v 5)
,去掉其中一条边,如e 10=[v5,v 6]; ⑤取圈(v 4,v 5,v 6)
,去掉其中一条边,如e 15=[v8,v 10]. 这时,剩余的图中不含圈,即得⑥取圈(v 8,v 9,v 10)
到了一个支撑树,如图所示。
图
(2)用避圈法求解,求解过程如下:
①在图中,任取一条边e 1,找一条与e 1不构成圈的边e 4;
②找一条与{el ,e 4}不构成圈的边e 6;
③找一条与{el ,e 4,e 6}不构成圈的边e 8;
④找一条与{el ,e 4,e 6,e 8}不构成圈的边e 9;
⑤找一条与毛{el ,e 4,e 6,e 8,e 9}不构成圈的边e 11;
⑥找一条与{el ,e 4,e 6,e 8,e 9,e 11}不构成圈的边e 12;
⑦找一条与{el ,e 4,e 6,e 8,e 9,e 11,e 12}不构成圈的边e 13;
⑧找一条与{el ,e 4,e 6,e 8,e 9,e 12,e 13}不构成圈的边e 14。这时,剩余的图中不含圈,即得
相关内容
相关标签