2017年东华大学旭日工商管理学院802运筹学考研题库
● 摘要
一、选择题
1. 在求解整数规划问题时,不可能出现的是( )。
A. 唯一最优解 B. 无可行解 C. 多重最优解 D. 无穷多最优解 【答案】D
【解析】整数规划的可行解的个数是有限的,所以整数规划中不可能出现无穷多最优解。
2. 若f 是G 的一个流,K 为G 的一个割,且f 的流量等于K 的容量,则K 一定是( )。
A. 最大流 B. 最大割 C. 最小流 D. 最小割 【答案】D
【解析】网络从发点到收点的各通路中,由容量决定其通过能力,最小割集则是这些路中的咽喉部分,或者叫瓶口, 其容量最小,它决定了整个网络的最大通过能力。
3. 设线性规划
A. 基本可行解 B. 基本可行最优解 C. 最优解 D. 基本解 【答案】A
【解析】可行解包括基可行解与非基可行解。
4. 线性规划可行域为封闭的有界区域,最优解可能是( )。
A. 唯一的最优解 B. 一个以上的最优解 C. 目标函数无界 D. 没有可行解
第 2 页,共 25 页
有可行解,则此线性规划一定有( )。
【答案】AB
【解析】可行域非空,故有可行解; 可行域封闭,故目标函数有界,有一个或多个最优解。
二、填空题
5. 最速下降法的搜索方向_____。
牛顿法的搜索方向为_____。 拟牛顿法的搜索方向为_____。 【答案】
【解析】最速下降法:
可以得出,
当
时,下降最快。
牛顿法:正定二次函
数
即搜索方向是
拟牛顿法
:
(单位阵)
6. 流f 为可行流必须满足_____条件和_____条件。
【答案】容量限制条件和平衡条件
【解析】在运输网络的实际问题中可以看出,对于流有两个明显的要求:一是每个弧上的流量不能超过该弧 的最大通过能力(即弧的容量); 二是中间点的流量为零。因为对于每个点,运出这点的产品总量与运进这点的 产品总量之差,是这点的净输出量,简称为是这一点的流量; 由于中间点只起转运作用,所以中间点的流量必为 零。易而发点的净流出量和收点的净流入量必相等,也是这个方案的总输送量。
7. 对于同一风险决策问题,与用期望收益最大准则得到相同结果的决策准则是:_____。
【答案】期望损失最小准则
【解析】对于同一风险决策问题,用期望收益最大准则和期望损失最小准则获得的决策方案相同。
8. 在用对偶单纯形法求解某线性规划问题时, 当进基变量x i 确定后,出基变量的选取原则是:_____。
【答案】
若
是最优点,
则
三、证明题
第 3 页,共 25 页
9. 设是正定二次函数。试证:若
关于Q 共扼
分别在两条平行
于方向P 的直线上的极小点,则方向p 与方向
【答案】因为则有从而又由于则有
10.假设线性规划问题为:
其中
,秩
分别是f (x )在两条平行于方向P 的直线上的极小点, ,
运用单纯形算法求得的最优基可行解时,所有的非基变量检验数全都<0,试证明这时所得到的最优解必定 是线性规划问题(l )的准最优解。
【答案】一般情况下,经过迭代后解变为
再将上式代入目标函数式,整理后得到
令于是
再令则
时,此时的解就为最优解。
,
使
这样当所有非基变量的检验数即
11.证明:矩阵对策G={S1,S 2; A}在混合策略意义下有解的充要条件是:存在
为函数以
的一个鞍点,即对一切
【答案】(l )先证明充分性 对任意X , Y 均有
,故得出
第 4 页,共 25 页
,有