当前位置:问答库>考研试题

2017年聊城大学数学科学学院814高等代数考研题库

  摘要

一、选择题

1. 设线性方程组

的解都是线性方程组

的解空间分别为

的解,则( )。

所以

即证秩 2. 设

A. 合同且相似 B. 合同但不相似 C. 不合同但相似 D. 不合同不相似 【答案】A

【解析】因为A ,B 都是实对称阵,且B 有4个特征值

又因为即A 也有4个特征值0,0,0,4. 因而存在正交阵

其中

故A 〜B.

再由

是正交阵,知T 也是正交阵,从而有

且由①式得

【答案】(C ) 【解析】设

则A 与B ( ).

使

因此A 与B 合同.

3. 设A 、B 、C 均为n 阶矩阵,E 为n 阶单位矩阵,如B=E+AB, C=A+CA, 则B —C 为( ).

A.E B.-E C.A D.-A

【答案】A

【解析】由题设(E-A )B=E, 所以有

B (E-A )=E.

又C (E-A )=A,故

(B-C )(E-A )=E-A.

结合E-A 可逆,得B-C=E.

4. 设

A. 合同且相似 B. 合同但不相似 C. 不合同但相似 D. 既不合同,也不相似 【答案】B

【解析】A 、B 都是实对称矩阵,易知

所以A 的特征值为3,3,0;而

B 的特征值为1,1,0,所以A 与B 合同,但不相似.

5. 设A 、B 为满足AB=0的任意两个非零矩阵. 则必有( ).

A.A 的列向量组线性相关,B 的行向量组线性相关 B.A 的列向量组线性相关,B 的列向量组线性相关 C.A 的行向量组线性相关,B 的行向量组线性相关 D.A 的列向量组线性相关,B 的列向量组线性相关 【答案】A 【解析】方法1:设由于

又由方法2:设考虑到

不妨设线性相关.

由已知及以上证明知B ’的列线性相关,即B 的行向量组线性相关.

由于AB=0, 所以有

即r (A )>0, r (B )>0, 所以有

R (A )

故A 的列向量组及B 的行向量组均线性相关.

并记A 各列依次为

由于AB=0可推得AB 的第一列

从而

则A 与B ( ).

二、分析计算题

6. 计算行列式

【答案】解法I 第行都乘-1加到第1行,得

解法II 先从第列提出公因子,然后各列都乘-1加到第一列,即

7. 在4元行空间中求

在以下基下的坐标:

【答案】设以4元行空间的基•

在此基下的坐标,即求线性方程组

的解. 但易知(对此方程组的増广矩阵施行初等

在此基下坐标为

行变换,或利用初等行变换求A 的逆方阵)此方程组的解为

为列向量的4阶方阵为A ,易知

确定为

8. 计算n 阶行列式

【答案】