当前位置:问答库>考研试题

2018年东北师范大学数学与统计学院432统计学[专业硕士]之概率论与数理统计考研基础五套测试题

  摘要

一、证明题

1. 从同一总体中抽取两个容量分别为n , m 的样本,

样本均值分别为

将两组样本合并,其均值、方差分别为

证明:

【答案】设取自同一总体的两个样本为由

2. 设X 为仅取非负整数的离散随机变量,若其数学期望存在,证明:

【答案】(1)由于

存在,所以该级数绝对收敛,从而有

(2)

第 2 页,共 44 页

样本方差分别为

3. 在伯努利试验中,事件A 出现的概率为p , 令

证明:【答案】

服从大数定律.

为同分布随机变量序列,其共同分布为

从而

又当

时,

与独立,所以

又因为

于是有

即马尔可夫条件成立,故

4. 设二维随机向量

服从大数定律.

服从二维正态分布,且

证明:对任意正常数a , b 有

【答案】记

由条件知

所以

由此得

所以

第 3 页,共 44 页

其中

又由

这就完成不等式的证明.

5. 设

为来自

的i.i.d 样本,其中,样本的联合密度函数为

两个参数空间分别为

利用微分法,在下而在

的MLE 为

分别为

的MLE.

未知.

).

证明关于假设【答案】记

的单侧t 检验是似然比检验(显著水平

于是似然比统计量为

在此时

,由于

,故只需考虑

的情形,

的单调增函数,故此时的似然比统计量是传统的t 统计量的增函数,

即此时的似然比检验等价于单侧的t 检验,拒绝域由t 检验的结论知,

6. 设X 为非负连续随机变量,若

(2)

,这就完成了证明. 存在,试证明:

【答案】(1)因为X 为非负连续随机变量,所以当x<0时,有F (x )=0.公式得

(2)因为X 为非负连续随机变量,所以X 也是非负连续随机变量,因此利用(1)可得

,则

第 4 页,共 44 页