2016年西安邮电大学自动化学院812运筹学考研导师圈定必考题汇编及答案
● 摘要
一、选择题
1. 关于最小费用最大流,求解时不会用到下面哪种方法( )。 A.Dijkstra 算法 B.Floyd 算法
C.Ford 一Fulkerson 算法 D. 奇偶点作业法 【答案】D
【解析】奇偶点作业法为中国邮递员问题中寻找欧拉圈时所用的方法,最小费用最大流问题并不涉及此法。 2. 设线性规划A. 基本可行解 B. 基本可行最优解 C. 最优解 D. 基本解 【答案】A
【解析】可行解包括基可行解与非基可行解。
3. 线性规划灵敏度分析应在( )的基础上,分析系数的变化对最优解产生的影响。 A. 初始单纯形表 B. 最优单纯形表 C. 对偶问题初始单纯形表 D. 对偶问题最优单纯形表 【答案】BD
【解析】灵敏度分析的是当系数的一个或几个发生变化时, 已求得的线性规划问题的最优解会有什么变化,所以进行灵敏度分析是在最优单纯形表或对偶问题的最优单纯形表的基础上分析的, 最优单纯形表反映的就是系数变化前己求得的最优解。
有可行解,则此线性规划一定有( )。
二、填空题
4. 某整数规划模型,解其松弛问题得到最优解。若其中某分量x j 二场为非整数,用分支定界法求解时,针对 该分量构造的两个约束条件应为:_。 【答案】
【解析】由分支定界法的原理可以,良容易得至“结果,其中〔b j 〕为不大于bj 的最大整数。 5. Fibonacoi 法在[2,6]区间上取的初始点是_。 【答案】
,
【解析】由Fibonacci 的计算方法可知。
6. 对于线性规划问题:MaxZ=CX.AX≦b.X ≧0,若B=(P 1,P 2,…,P m )为A 中m 个线性无关的列向量, 且为该LP 的一个可行基,则对应于基B 的基可行解为:_____,该基可行解为最优解的条件是:_____。 【答案】
,对于一切
有
。
【解析】若B=(P 1,P 2,…,P m )为A 中m 个线性无关的列向量,此时令非基变
量
, 这时变量的个数等于线性方程组的个数,用高斯消去法,可求得对应
于基B 的基可行解
为
7. 若对偶问题为无界解,则原问题:_____。 【答案】无可行解
【解析】任一对偶问题的可行解都是原问题的上界,而原问题的任意可行解都是对偶问题的下界。若对偶问题为无界解,则原问题的目标函数有可行解。
无界,即无限小,则z 无解,即没
。由最优解的判别定理,若对于一
切
, 则所求得的基可 行解为最优解。
三、证明题
8. 对于M/M/1/∞/∞模型,在先到先服务情况下,试证明:
顾客排队等待时间分布的概率密度是
,并根据该式求等待时间的期望值
为在统计平衡 下顾客的等待时间,则
由a n 的定义,得
,于是有
。
,【答案】令N ’为在统计平衡下一个顾客到达时刻看到系统中已有的顾客数(不包括此顾客)
由定理知,对任何一个输入为最简单流的单服务台或多服务台的等待制排队系统,
恒有
,所以,
到达者遇到系统中顾客数不少于1个顾客,是需要等待的充要条件,因此
①
因为当系统中有n (n ≥l )个顾客时,其中只有一个顾客正在接受服务,而其余n-1个顾客在排队等待,所以,新到顾客必须在服务台轮空n 次后,才能接受服务。于是,服务台轮空次数m (t )
②
其次,因为服务时间服从负指数分布,故其输出流,即服务台轮空次数m (t )是一最简单流,其参数为
因此
③
将③式代入②式,然后再将②式代入①式,得
,其中,
,有
所以,顾客在系统中的等待时间分布为
因为,
以正概率
取0值,而当t>0时,它又具有连续型随机变量的性质,其分布函数必
既不是连续型随机变量,又不是离散型随机变量。然而类似于连的密度函数为
9. 设m*m对策的矩阵为
在(0,+∞)
上连续。所以续型随机变量,可以定义
。
其中,当时,当i=j时,证明此对策的最优策略为
【答案】由题意知,
相关内容
相关标签