2017年吉林大学原子与分子物理研究所957量子力学(需携带计算器)考研仿真模拟题
● 摘要
一、证明题
1. 粒子自旋处于
的本征态
【答案】易知但是
,(常数)
同理,可得
因此:
2. 证明厄密算符的本征值是实数。量子力学中表示力学量的算符是不是都是厄密算符? 【答案】以表示的本征值
由此得
表示所属的本征函数,则
即是实数。
因为是厄密算符,于是有
所以有:
试证明
的不确定关系
:
二、计算题
3. 设质量为m 的粒子处于势场的本征波函数
也属于正幂次级数,故有定态方程
式中:
则I 式可以化为:令
上方程可化简为
式解得
4. 二电子体系中,
总自旋【答案】(
写出(
)的归一化本征态(即自旋单态与三重态)。
则
中,K 为非零常数. 在动量表象中求与能量E 对应
【答案】显然势场不含时,属于一维定态问题,而
其中C 为归一化常数。
)的归一化本征态记为则自旋单态为:
自旋三重态为:
5. 考虑在无限深势阱(0<x <a )中运动的两电子体系,略去电子间的相互作用以及一切与自旋有关的相互作用,写出体系的基态和第一激发态的波函数和能量,并指出其简并度。 【答案】二电子体系,总波函数反对称。一维势阱中,体系能级为:
(1)基态:
空间部分波函数是对称的
:自旋部分波函数是反对称的:总波函数为:
(2)第一激发态:空间部分波函数:
自旋部分波函数:
二电子体系的总波函数为:
基态不简并,第一激发态是四重简并的。
6. 验证球面波
满足自由粒子的薛定谔方程:
(注:【答案】
故
其中
代表仅与角度有关的微分算符)
则
故
由(1)(2)(3)式可得
7. 设两个电子在弹性中心力场中运动,每个电子的势能是能和u (r )相比可以忽略,求这两个电子组成的体系波函数。
【答案】这个一个两电子体系,属于费米子系统。在不考虑电子之间库仑相互作用的情况下,有:
其中
分别为谐振子第m 、n 个能量本征函数。
(2)当
时,由这两电子组成的体系波函数为:
其中:
如果电子之间的库仑
此即所需证明方程.
(1)当m=n时,由这两电子组成的体系波函数为:
相关内容
相关标签