当前位置:问答库>考研试题

2017年吉林大学物理学院854量子力学考研题库

  摘要

一、证明题

1. —粒子处于势场V (x )中,且势V (x )没有奇点. 假设相应的本征能量色【答案】由题意

并在方程两边同时积分

则由正交归一化条件有

考虑到哈密顿算符的厄米算符性质并利用式Ⅱ有设粒子本征波函数完备集为

试证明这两个波函数对应的态矢正交.

是束缚态的波函数,

态矢为态矢为

Ⅳ、Ⅴ代入Ⅲ有

此即亦即两个波函数对应态矢正交.

2. (1)对于任意的厄米算符,证明其本征值为实数. (2)证明厄米算符属于不同本征值的本征函数彼此正交. (3)对于角动量算符

证明它是厄米算符,并且求解其本征方程.

因为存在

(2)证:因为而(3)因为

所以

即正交

第 2 页,共 45 页

【答案】(1)证:对于厄米算符

所以

即本征值为实

具有周期性,

所以

设本征方程为

其中为本征值,上式可改写为

易解出

C 为积分常数,可由归一化条

即为厄米算符。

件决定. 又因为波函数满足周期性边界条件的限制,

由此可得数记为

即为其本征函数. 相应的本征方程为

即角动量z 分量的本征值为

是量子化的,相应本征函

再利用归一化条件可得

二、计算题

3. 设

为氢原子束缚态能量本征函数(已归一),考虑自旋后,

某态表示为

在该态下计算(结果应尽量化简):

(1)在薄球壳(2)在薄球壳(3)

内找到粒子的几率。 内找到粒子且自旋沿

的几率。

为总角动量,计算在该态下的平均值。

在薄球壳

内找到粒子的概率

【答案】(1)由题意可得

:为:

(2)在薄球壳内找到粒子且自旋沿+x的几率可表示 为:

故:

第 3 页,共 45 页

已知在本征态表象下

因此有:

(3)在

下的平均值为:

4. 设基态氢原子处于弱电场中,微扰哈密顿量为(1)求很长时间后已知,基态

电子跃迁到激发态的概率.

(2)基态电子跃迁到下列哪个激发态的概率等于零? 简述理由

.

【答案】(1)根据跃迁几率公式

其中

可知,必须先求得

终态量子数必须是

到末态

的跃迁矩阵元为

代入跃迁几率公式

根据题意知,氢原子在t>0时所受微扰为:氢原子初态波函数为:根据选择定则记由初态

其中

T 为常数。

已知,a 基态其中为玻耳半径.

第 4 页,共 45 页