2017年山东财经大学运筹学(同等学力加试)复试仿真模拟三套题
● 摘要
一、简答题
1. 试说明C 一W 节约算法的基本思想,你认为还可用它解决哪些方面的问题? 举例加以说明。
【答案】(1)C 一W 节约算法的基本思想(以旅行商问题为例):优先考虑将节约值最大的弧 这样在满足访问若干城市各一次且仅一次的条件下, 插入到旅行线路中,最大限度地缩短了路程。
(2)举例。运用C 一W 节约算法:设n 个不同用户为n 个点,维修点为基点,n 个用户点中从点i 到点j 的 长度为工人骑摩托车的交通时间加上点i 与点j 维修时间总和的一半。优先考虑将节约值最大的长度加入工作线路中去进行迭代。
2. 考虑两个企业的资源整合问题。如果每个单位单独组织生产,各自的效益和,往往小于把两个单位的生 产要素进行重组,然后再统筹生产带来的收益高。因此,资产重组,往往能够带来“双赢”的格局,企业自身也 希望通过合并,做大做强。问题是,每个企业可能会故意夸大其利润水平,从而希冀分得更多的合作收益。请谈谈你的设想,用以协调 其中可能出现的问题(不超过300字,可用符号表述你的想法)?
【答案】让两个企业单独汇报独立生产能获得的利润,分别记为z 1、z 2。如果z 1+z2≦2成之,,按照z 1、z 2的比例进行分配。这样的分配方式,两个企业说真则将合作后的额外收益z-(z 1+z2)话,是一个均衡策略。
二、计算题
3. 已知下列资料,如表所示:
表
求出这项工程的最低成本日程。
【答案】由表中的已知条件和数据,绘制如图所示的网络图。
图
各事项的最早时间为:
各事项最迟时间为:
将各事项的最早时间与最迟时间分别记入该事项右下角的“口”和“△”内,如图所示。
图
总时差为零的工序为关键工序,
从图中可以看出关键路线为天,工程的直接费用(各工序直接费用之和)为
. 又已知
工程项目每天的间接费用为500元,按图及表中的已知资料,若按图安排,易知工程总工期为巧
如果要缩短工期,应该首先缩短关键线路上赶一天进度所需费用最小的工序的作业时间。工序B ,G ,H 中, G 赶一天进度所需费用最小,为300元,且小于一天的工程间接费用500元。缩短G 工序1天,此时总费用为 22500+(300-500)=22600元。此时,关键路线有三条,分别为B ,G ,H ;B ,C 和A ,D ,G ,H 。此时,如果再 缩短工程工期,赶进度所需费用将超过因缩短工期而节约的间接费用,从而导致工程总费用的增加。
所以,最低成本日程为14天,此时工程总费用为22600元。
4. 有A 、B 、C 、D 四种零件均可在设备甲或设备乙上加工。已知这两种设备上分别加工一个零件的费用 如表5一12所示。又知设备甲或设备乙只要有零件加工就需要设备的启动费用,分别为100元和巧0元。现要求 加工四种零件各3件,问应如何安排生产使总的费用最小? 请建立该问题的线性规划模型(不需求解)。加工一个 零件的费用(单位:元)
表
【答案】设i=1,2,3,4分别表示产品A 、B 、C 、D ; j=1,2表示设备甲、乙; x ij 表示产品i 在设备j 上生产的个数,
则得线性规划模型如下:
其中