2017年华中科技大学自动化学院828运筹学考研题库
● 摘要
一、简答题
1. 简述常用的不确定型决策准则。
【答案】不确定性决策是指决策者对将发生结果的概率一无所知,只能凭决策者的主观倾向进行决策,适用于对 概率判断缺乏信心,对事情做出简单的估计。。不确定性决策由决策者的主 观态度不同基本可分为四种准则:悲 观主义准则、乐观主义准则、等可能性准则、最小机会准则。
(l )悲观主义决策准则:行中取min ,再取max 。 (2)乐观主义决策准则:行中取max ,再取max 。
(3)等可能性准则:先求各策略的收益期望值,再从中取max 。 (4)最小机会损失准则:
机会损失矩阵:每一列的值为列中最大的数分别减去其他的数(自己则变为0,其他的值全大,即
于等于0)
(5)折衷主义决策准则
其中a (最小收益值。
然后选择
2. 简述求解整数规划分枝定界法的基本思想。
【答案】设有最大化的整数规划问题A ,与它对应的线性规划为问题B ,从解问题B 开始,若其最优解不符合A 的整数条件,那么B 的最优目标函数必是A 的最优目标函数z*的上界,记作; 而A 的任意可行解的目标函数值将是z*的一个下界
; 。分支定界法就是将B 的可行域分成
子区域(称为分支)的方法,逐步减小和增大:, 最终求到z*。
3. 试写出求解最短径路的Dijkstra 算法的步骤。
【答案】Dijkstra 算法的步骤为:
(l )给v s 以p 标号,P (v S )二0,其余各点均给T 标号,T (v i )=+∞。
(2)若v i 点为刚得到P 标号的点,考虑这样的点v i ,(v i ,vj )属于E ,且v i 为T 标号。对v j 的T 标号进行如下修改:T (v j )=min[T(v i ),p (v i )+lij ]
(3)比较所有具有T 标号的点,把最小者改为P 标号,即:
当存在两个以
上最小者时,可同时改为P 标号。若全部点均为P 标号时停止,否则用代V i 转回(2)。
第 2 页,共 25 页
。
)为乐观系数,,。分别表示第i 个策略可能得到的最大收益值与
4. 简述割平面法的基本思想。
【答案】这个方法的基础仍然是用解线性规划的方法去解整数规划问题,首先不考虑变量xi 是整数这一条件, 但增加线性约束条件(用几何术语,称为割平面)使得由原可行域中切割掉一部分,这部分只包含非整数解,但没有切割掉任何整数可行解。这个方法就是指出怎样找到适当,使切割后最终得 到这样的可行域,它的一个有整数坐标的极点的割平面(不见得一次就找到)恰好是问题的最优解。
二、证明题
5. 证明:设
,则
为G 的解的充要条件是:存在数。(本章定理4)
,使得
和
分别
是不等式组(I )和(II )的解,且
【答案】(l )先证充分性。由于x*是不等式组(I )的解,且
又由于
是不等式组
的解,且
②
由式①和式②,可知
故由教材第390页的定理3可知,(X ,Y )为G 的解。
*
*
**
(2)再证必要性,由于(X ,Y )为G 的解,所以有
则
,
**
,因此X 和Y 分别是不等式组(I )和 ()
的解,且v=VG 。
6. 证明:矩阵对策G={S1,S 2; A}在混合策略意义下有解的充要条件是:存在
为函数以
的一个鞍点,即对一切
【答案】(l )先证明充分性 对任意X , Y 均有
,故得出
第 3 页,共 25 页
,
使
,有
又所以,
另一方便,对任何X ,Y 有
②
由不等式①、②
,
(2)再证必要性。设有X*,Y*,使得
则由
,有
所以对任意X ,Y ,有
综上得证。
7. 对于M/M/1/∞/∞模型,在先到先服务情况下,试证明:
顾客排队等待时间分布的概率密度是
,并根据该式求等待时间的期望值
为在统计平衡 下顾客的等待时间,则
由a n 的定义,得
,于是有
。
,【答案】令N ’为在统计平衡下一个顾客到达时刻看到系统中已有的顾客数(不包括此顾客)
① ,所以得
由定理知,对任何一个输入为最简单流的单服务台或多服务台的等待制排队系统,
恒有
,所以,
到达者遇到系统中顾客数不少于1个顾客,是需要等待的充要条件,因此
①
因为当系统中有n (n ≥l )个顾客时,其中只有一个顾客正在接受服务,而其余n-1个顾客在
第 4 页,共 25 页
相关内容
相关标签