2018年湘潭大学数学与计算科学学院814统计学(二)考研基础五套测试题
● 摘要
一、简答题
1. 中心极限定理。
【答案】设随机变量
令
则
也就是说,当n 趋于无穷大时,的分布趋向于标准正态分布 相互独立(S 卩,对任意给定的相互独立)且服从同一分布,该分布存在有限的期望和方
差
2. 什么是抽样平均误差?影响抽样平均误差的因素有哪些?
【答案】抽样平均误差是指抽样平均数(或抽样成数)的标准差。它反映抽样平均数(或抽样成数)与总体平均数(或总体成数)的平均误差程度。
影响抽样平均误差的因素有四个:
(1)样本单位数目。在其他条件不变的情况下,抽样数目越多,抽样误差越少;抽样数目越少,抽样误差越大。当时,就是全面调查,抽样误差此时为零。
(2)总体标志变动程度。其他条件不变的情况下,总体标志变异程度越大,抽样误差越大;总体变异程度越小,抽样误差越小。
(3)抽样方法。一般讲,不重复抽样的抽样误差要小于重复抽样的抽样误差。当n 相对N 非常小时,两种抽样方法的抽样误差相差很小,可忽略不计。
(4)抽样组织方式。采用不同的抽样组织方式,也会有不同的抽样误差。一般讲分层抽样的抽样误差较小,而整群抽样的抽样误差较大。
3. 简述非抽样误差类型。
【答案】非抽样误差是相对抽样误差而言的,是指除抽样误差之外的,由于其他原因引起的样本观察结果与总体 真值之间的差异。无论是概率抽样、非概率抽样,或是在全面调查中,都有可能产生非抽样误差。非抽样误差有以下几种类型:
(1)抽样框误差,是指抽样框中的单位与研宄总体的单位不存在一一对应的关系,使用这样的抽样框抽取样本就会出现一些错误。
(2)回答误差,是指被调查者在接受调查时给出的回答与真实情况不符。导致回答误差的原因有多种,主要有理答误差、记忆误差和有意识误差。
(3)无回答误差,是指被调查者拒绝接受调查,调查人员得到的是一份空白的答卷。
(4)调查员误差,是指由于调查员的原因而产生的调查误差。
(5)测量误差,是指如果调查与测量工具有关,则很可能产生测量误差。
4. 简述方差分析的基本原理。
【答案】方差分析通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。在方差分析中,数据的误差是用平方和来表示的,总平方和可以分解为组间平方和与组内平方和。组内误差只包含随机误差,而组间误差既包括随机误差,也包括系统误差。如果组间误差中只包含随机误差,而没有系统误差。这时,组间误差与组内误差经过平均后的数值就应该很接近,它们的比值就会接近1; 反之,如果在组间误差中除了包含随机误差外,还会包含系统误差,这时组间误差平均后的数值就会大于组内误差平均后的数值,它们之间的比值就会大于1。当这个比值大到某种程度时,就可以说因素的不同水平之间存在着显著差异,也就是自变量对因变量有影响。
5. 简述描述离散程度的统计量和适用类型。
【答案】衡量数据离散程度的统计量主要有极差、平均差、方差和标准差,其中最常用的是方差和标准差。
(1)极差是指一组数据的最大值与最小值之差。用R 表示,其计算公式为:
极差是描述数据离散程度的最简单测度值,计算简单,易于理答,但它容易受极端值的影响。由于极差只是利用了一组数据两端的信息,不能反映出中间数据的分散状况,因而不能准确描述出数据的分散程度。
(2)平均差也称平均绝对离差,它是各变量值与其平均数离差绝对值的平均数。平均差以平均数为中心,反映了每个数据与平均数的平均差异程度,它能全面准确地反映一组数据的离散状况。平均差越大,说明数据的离散程度越大;反之说明数据的离散程度小。为了避免离差之和等于零而无法计算平均差这一问题,平均差在计算时对离差取了绝对值,以离差的绝对值来表示总离差,这就给计算带来了不便,因而在实际中应用较少。但平均差的实际意义比较清楚,容易理答。
(3)方差是各变量值与其平均数离差平方的平均数。它在数学处理上是通过平方的办法消去离差的正负号, 然后再进行平均,方差开方后即得到标准差,方差或标准差能较好地反映出数据
的离散程度,是实际中应用最广泛的离散程度测度值。与方差不同的是,标准差是具有量纲的,它与变量值的计量单位相同,其实际意义要比方差清楚。因此,在对实际问题进行分析时更多地使用标准差。
二、计算题
6. 表1是1981〜2000年我国油菜籽单位面积产量数据(单位:kg/hm2)。
表1
我国油菜籽单位面积产量
要求:
(1)绘制时间序列图描述其形态。
(2)用5项移动平均法预测2001年的单位面积产量。
(3)采用指数平滑法,分别用平滑系数预测2001年的单位面积产量。
(4)分析预测误差,说明用哪一个平滑系数预测更合适。
【答案】(1)绘制时间序列图,如图1所示。
图1时间序列图
(2)2001年的预测值为:
相关内容
相关标签