2017年中国人民大学统计学院432统计学[专业学位]之统计学考研冲刺密押题
● 摘要
一、简答题
1. 解释总体分布、样本分布和抽样分布的含义。
【答案】总体分布就是总体中所有个体关于某个变量(标志)的取值所形成的分布。假设X 为总体随机变量,那么总体分布就是指X 的分布。很显然,同一变量不同的总体或同一总体不同的变量,其分布是不同的。
样本分布就是样本中所有个体关于某个变量(标志)的取值所形成的分布。假设x 为总体随机变量X 在样本 中的体现,那么样本分布就是指x 的分布,或者说是关于《个观测值的分布。同样,同一变量不同的样本或同一 样本不同的变量,其分布是不同的。
一般意义上说,抽样分布就是样本统计量的概率分布,它由样本统计量的所有可能取值和与之对应的概率组 成。如果说样本分布是关于样本观测值的分布,那么抽样分布则是关于样本统计量的分布,而样本统计量是由样 本观测值计算而来的。具体地说,抽样分布就是从容量为W 的总体中抽取容量为n 的样本时,所有可能的样本 统计量所形成的分布。假设从容量为W 的有限总体中最多可以抽取m 个容量为n 的不同样本,那么把所有m 个样本统计值形成频率分布,就是抽样分布。可以说,抽样分布是研宄样本分布与总体分布之间的桥梁。
2. 简述均值、众数和中位数三者之间的关系及其在实际中的应用。
【答案】(1)众数、中位数和平均数的关系
从分布的角度看,众数始终是一组数据分布的最高峰值,中位数是处于一组数据中间位置上的值,而平均数 则是全部数据的算术平均。
对于具有单峰分布的大多数数据而言,众数、中位数和平均数之间具有以下关系:
①如果数据的分布是对称的,众数中位数和平均数必定相等,即
②如果数据是左偏分布,说明数据存在极小值,必然拉动平均数向极小值一方靠,而众数和中位数由于是位 置代表值,不受极值的影响,因此三者之间的关系表现为:
③如果数据是右偏分布,说明数据存在极大值,必然拉动平均数向极大值一方靠,
则
(2)众数、中位数和平均数在实际中的应用
①众数是一组数据分布的峰值,不受极端值的影响。其缺点是具有不唯一性,一组数据可能有一个众数,也可能有两个或多个众数,也可能没有众数。众数只有在数据量较多时才有意义,
当数据量较少时,不宜使用众数。 众数主要适合作为分类数据的集中趋势测度值。
②中位数是一组数据中间位置上的代表值,不受数据极端值的影响。中位数主要适合作为顺序数据的集中趋势测度值。
③平均数是对数值型数据计算的,而且利用了全部数据信息,它是实际中应用最广泛的集中趋势测度值。当数据呈对称分布或接近对称分布时,3个代表值相等或接近相等,这时则应选择平均数作为集中趋势的代表值。 但平均数的主要缺点是易受数据极端值的影响,对于偏态分布的数据,平均数的代表性较差。因此,当数据为偏态分布,特别是当偏斜程度较大时,可以考虑选择众数或中位数。
3. 构建综合评价指数时需要考虑哪些方面的问题?
【答案】构建综合评价指数需要考虑如下几个方面的问题:
(1)进行理论研宄,其中包括统计指标理论以及统计指标体系的理论研宄,以便为确定所需的评价指标提供一定的理论依据。
(2)建立科学的评价指标体系。所建立的指标体系是否科学与合理,直接关系到评价结果的科学性和准确性。建立指标体系,首先应进行必要的定性研宄,对所研宄的问题进行深入的分析,尽量选择那些具有一定综合意义的代表性指标;其次,应尽可能运用多元统计的方法进行指标的筛选,以提高指标的客观性。
(3)评价方法研宄,主要包括综合评价指数的构造方法、指标的赋权方法以及各种评价方法的比较等。
4. 什么是抽样平均误差?影响抽样平均误差的因素有哪些?
【答案】抽样平均误差是指抽样平均数(或抽样成数)的标准差。它反映抽样平均数(或抽样成数)与总体平均数(或总体成数)的平均误差程度。
影响抽样平均误差的因素有四个:
(1)样本单位数目。在其他条件不变的情况下,抽样数目越多,抽样误差越少;抽样数目越少,抽样误差越大。当时,就是全面调查,抽样误差此时为零。
(2)总体标志变动程度。其他条件不变的情况下,总体标志变异程度越大,抽样误差越大;总体变异程度越小,抽样误差越小。
(3)抽样方法。一般讲,不重复抽样的抽样误差要小于重复抽样的抽样误差。当n 相对N 非常小时,两种抽样方法的抽样误差相差很小,可忽略不计。
(4)抽样组织方式。采用不同的抽样组织方式,也会有不同的抽样误差。一般讲分层抽样的抽样误差较小,而整群抽样的抽样误差较大。
5. 在显著性检验过程中,经常遇到值这一概念,试回答以下问题:
(1)值能告诉我们什么信息?
(2)当相应的值较小时为什么要拒绝原假设?
(3)显著性水平与值有何区别?
【答案】如果原假设为真,所得到的样本结果会像实际观测结果那么极端或更极端的概率,称为值,也称为观察到的显著性水平。
(1)值是当原假设正确时,得到所观测的数据的概率。如果原假设是正确的话,值告诉我们这样的观测数据会有多么的不可能得到。相当不可能得到的数据,就是原假设不对的合理证据。
(2)值是反映实际观测到的数据与原假设明实际观测到的数据与之间不一致程度的一个概率值。值越小,说之间不一致的程度就越大,检验的结果也就越显著。
(3)是犯第I 类错误的上限控制值,它只能提供检验结论可靠性的一个大致范围,而对于一个特定的假设检验问题,却无法给出观测数据与原假设之间不一致程度的精确度量。也就是说,仅从显著性水平来比较,
如果选择的值相同,
所有检验结论的可靠性都一样。而值可以测量出样本观测数据与原假设中假设的值的偏离程度。
6. 如果有百分之五的人是左撇子,而小明和他弟弟都是左撇子;那么小明和他弟弟都是左撇子这个事件的 概率是不是0. 05X0. 05=0. 00257?为什么?
【答案】不是。
显然,小明和他弟弟都是左撇子的事件不是独立的,所以这种计算方法错误。
当两个事件相互独立时,
当两个事件不相互独立时,⑴ ⑵
记事件A 为小明是左撇子,事件B 为小明的弟弟是左撇子。显然小明是左撇子和他弟弟是左
撇子这两个事件不相互独立,所以选择第二个公式计算小明和他弟弟都是左撇子这个事件的概率。
7. 什么是指数?它有哪些性质?
【答案】指数,或称统计指数,是分析社会经济现象数量变化的一种重要统计方法。它有如下一些性质:
(1)相对性。指数是总体各变量在不同场合下对比形成的相对数,它可以度量一个变量在不同时间或不同空间的相对变化,如一种商品的价格指数或数量指数。它也可以反映一组变量的综合变动,比如综合物价指数是根据一组商品价格的相对变化并给每种商品的相对数定以不同权数计算出来的,这种指数称为综合指数。另外根据对比两变量所处的是不同时间还是不同空间,它们计算出来的指数分时间性指数和区域性指数。
(2)综合性。综合性说明指数是一种特殊的相对数,它是由一组变量或项目综合对比形成的。比如,由若干种商品和服务构成的一组消费项目,通过综合后计算价格指数,以反映消费价格的综合变动水平。
(3)平均性。平均性含义有二:一是指数进行比较的综合数量是作为个别量的一个代表,这本身就具有平均的性质;二是两个综合量对比形成的指数反映了个别量的平均变动水平,比如物价指数反映了多种商品和服务项目价格的平均变动水平。
相关内容
相关标签