2017年浙江大学人文学院725量子力学之量子力学导论考研仿真模拟题
● 摘要
一、简答题
1. 什么是费米子? 什么是玻色子? 两者各自服从什么样的统计分布规律?
【答案】费米子是自旋为半奇数的粒子,玻色子是自旋为整数的粒子. 费米子遵守费米-狄拉克统计规律,玻色子遵从玻色-爱因斯坦统计规律.
2. 何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应?
【答案】在强磁场中,原子发出的每条光谱线都分裂为三条的现象称为正常塞曼效应。在弱磁场中,原子发出的
每条光谱线都分裂为
条(偶数)的现象称为正常塞曼效应。原子置于外
电场中,它发出的光谱线会发生分裂的现象称为斯塔克效应。
3. 简述波函数和它所描写的粒子之间的关系。
【答案】微观粒子的状态可用一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。 微观粒子的状态波函数则在为
用算符的本征函数
展开
态中测量粒子的力学量^
得到结果为
的几率是
得到结果在
范围内的几率
4. 写出由两个自旋态矢构成的总自旋为0的态矢和自旋为1的态矢。 【答案】总自旋为0:总自旋为1:
5. 自发辐射和受激辐射的区别是什么?
【答案】自发辐射是原子处于激发能级时,可能自发地跃迁到较低能级去,并发射出光子的过程;
受激辐射是处于激发能级低能级
的原子被一个频率为
的光子照射,受激发而跃迀到较
同时发射出一个同频率的受激光子的过程。受激辐射的光子是相干的,自发辐射是随机
的。
6. 有人说“在只考虑库仑势场情况下,氢原子原有本征态都存在实的轨道波函数”,你是否同意这种说法, 简述理由。 【答案】不同意。因为
第 2 页,共 40 页
为实函数,但可以为复函数。
7. 什么样的状态是定态,其性质是什么?
【答案】定态是能量取确定值的状态,其性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变
8. 请用泡利矩阵满足角动量对易关系。 【答案】电子的自旋算符
其中,
定义电子的自旋算符,并验证它们
9. 分别写出非简并态的一级、二级能量修正表达式。 【答案】
10.反常塞曼效应的特点,引起的原因。 【答案】原因如下:
(1)碱金属原子能级偶数分裂; (2)光谱线偶数条;
(3)分裂能级间距与能级有关; (4)由于电子具有自旋。
二、证明题
11.设在电子的某自旋态中,测量自旋的x 分量和 >> 分量的平均值皆为零,则测电子自旋分量的平均值一定为
【答案】设在
或
证明这一点。
表象中,这自旋态的表示为:
则由自旋x 分量和; y 分量算符的表本为:
根据题给条件,有:
由此得:即:
或
要么自旋朝下
第 3 页,共 40 页
这就意味着,此态要么是自旋朝上即都为自旋分量的本征态。在
这两个本征态中,
测量自旋分量的平无值分别为
和
12.(1)对于任意的厄米算符,证明其本征值为实数. (2)证明厄米算符属于不同本征值的本征函数彼此正交. (3)对于角动量算符
证明它是厄米算符,并且求解其本征方程.
因为存在
所以
即正交
即本征值为实
【答案】(1)证:对于厄米算符
数
(2)证:因为而(3)因为
所以
具有周期性,
而
所以
设本征方程为
其中为本征值,上式可改写为
易解出即为厄米算符。
C 为积分常数,可由归一化条
件决定. 又因为波函数满足周期性边界条件的限制,
由此可得数记为
即为其本征函数. 相应的本征方程为
即角动量z 分量的本征值为
是量子化的,相应本征函
再利用归一化条件可得
三、计算题
13.为电子自旋算符。写出在表象中的矩阵表示、的本征值及其对应的本征态。 【答案】
第 4 页,共 40 页
相关内容
相关标签