● 摘要
近年来,由于电工业、制造业、印染业、制药业等产业的快速发展,给我们的国民经济带来一定益处,同时也带来了一系列的环境污染问题。大气污染,噪声污染,水污染日益严重。尤其是水污染,近年来这方面的报道层出不穷,在降解各类废水中,催化湿式氧化技术(CWAO)是一项非常热门的技术,这项技术是在上世纪80年代发展出的一项专门处理高浓度、高毒性、高污染的难降解废水的高级氧化技术。这项技术的研究重点是多相湿式催化反应,在湿式催化反应中,开发高效的固体催化剂是这一项技术的关键所在 。据文献报道,许多研究者利用一种或几种活性金属或者将某种活性金属进行改性,来研究它们降解废水的效果。可是这种方法会存在一系列问题,比如:成本高、工艺繁琐、或者在处理废水过程中,引入其它污染。大自然中有很多的金属元素,这些金属元素化学性质不同,形态不同,对废水的处理效果也不同。本文就是建立一种高通量的筛选方法,通过不同的金属组配来降解废水,最终筛选出最优的金属配比。这种方法不仅缩短了试验周期,而且减少了人工劳动,提高了实验的工作效率。
本文是将生物学上的高通量筛选技术应用于金属催化剂的选择上,创建了一种新的方法。在筛选催化剂的过程中,同时对成千上万种金属组配进行筛选,最终找出最优的催化剂配比,这样做可以提高实验的工作效率。实验的主要研究内容包括以下部分:反应芯片的制备(疏水涂层的制备),检测体系的构建,反应器的开发与运行(喷雾装置的设计与自制密闭反应器的设计),模拟实验的运行与分析(降解荧光素钠溶液)。具体实验结果如下:
(1) 反应芯片的制备。这一过程主要包括片基的选择,网格大小的设计(设计了一张500*500微米的网格图,作为掩膜板),光敏胶的涂布,疏水网格的附着,纳米级二硫化钼的制备与负载。
(2) 检测方法的选择。实验使用荧光检测法对反应结果进行检测,荧光检测法不仅准确简捷,而且可以对很小的底物浓度进行检测,满足高通量筛选的要求。实验通过金属硫化物对荧光素钠溶液的降解,观察溶液荧光性的变化,反应结束后,反应液荧光性越弱,证明催化剂活性最强。
(3) 反应器的开发与运行。这一部分主要设计了一个喷雾装置和一个自制的密闭反应器,喷雾装置的应用可以使反应溶液雾化成小液滴,落在我们的反应芯片上(最大程度让小液滴尺寸均匀的落在网格里)。自制的密闭反应器可以很好的防止反应溶液的挥发,同时减少反应发生空间。
(4) 模拟试验的运行与分析。在模拟实验中,实验使用制备的二硫化钼与金属硫化物的复合材料来降解荧光素钠溶液,通过荧光素钠溶液荧光性的降低,来观察照片上的暗点,筛选出了最优的催化剂配比。同时,通过做一系列的宏观实验,验证得到的最优催化剂配比结果是有效的,这也说明了实验设计的基于荧光成像的高通量筛选技术是可行的。