2018年中央财经大学财政学院396经济类联考综合能力之工程数学—线性代数考研强化五套模拟题
● 摘要
一、解答题
1.
设
(1)计算行列式∣A ∣;
(2)当实数a 为何值时,
线性方程组【答案】
有无穷多解?并求其通解.
若要使得原线性方程组有无穷多解,
则有及得
此时,
原线性方程组增广矩阵为
进一步化为行最简形得
可知导出组的基础解系为
非齐次方程的特解为
故其通解为k 为任意常
数.
2.
设矩阵
求一个秩为2的方阵B. 使
【答案】
令
即
取.
进而解得的另一解为则有
.
的基础解系为:
方阵B 满足题意.
令
3.
设二次型
(1)证明二次型f
对应的矩阵为(2
)若
【答案】(1)由题意知,
记
正交且均为单位向量,证明f
在正交变换下的标准形为
故二次型/
对应的矩阵为(2)证明:
设则
而矩阵A
的秩
,由于
所以
为矩阵对应特征值所以
为矩阵对应特征值
所以
的特征向量;
的特征向量; 也是矩阵的一个特征值;
故f
在正交变换下的标准形为
4.
已知矩阵
可逆矩阵P ,使
和
试判断矩阵A 和B 是否相似,若相似则求出
若不相似则说明理由.
【答案】由矩阵A 的特征多项式
得到矩阵A
的特征值是
由矩阵B 的特征多项式
得到矩阵B
的特征值也是
当
时,由秩
知
A 可以相似对角化.
而
有2个线性无关的解,
即
时矩阵A 有2个线性无关的特征向量,矩阵
时矩阵B 只有1个线性无
只有1个线性无关的解,即
关的特征向量,矩阵B 不能相似对角化. 因此矩阵A 和B 不相似.
二、计算题
5.
设
求
【答案】直接计算得
一般可得
事实上,当k=1时,(1)式显然成立; 设当k=n时,(1)式成立,那么当时,
由归纳法,知(1)式成立.
相关内容
相关标签