● 摘要
随着科学技术的发展以及大型工程技术的需要, 20 世纪 70 年代人们提出了比正常系统更为广泛的奇异系统, 它大量出现在电力、航天、经济、生物等许多实际的系统模型中. 从目前的研究动向来看, 混杂奇异系统的研究正受到越来越多的研究人员的关注. 目前混杂奇异系统的研究成果主要是系统的 Lyapunov 渐近稳定和指数稳定, 即无限时间区间内系统的动态性能, 而在实际中, 常常需要研究系统在有限时间区间内的暂态性能. 所以, 研究混杂奇异系统的有限时间控制问题具有十分重要的意义. 本文在总结现有研究成果的基础上, 进一步在理论上深入研究了混杂奇异系统的有限时间稳定控制问题. 论文的主要内容和研究成果如下:
讨论了含不确定项的时变奇异系统的输入输出有限时间稳定问题, 其中的输入和输出分别是干扰输入和可控输出. 我们针对两类分别属于 L2 和 L∞ 的干扰输入,首先给出了奇异系统的输入输出有限时间稳定的充分条件. 然后, 给出了奇异系统在含不确定项情况下的输入输出有限时间稳定的充分条件.
在此基础上, 进一步讨论了一类连续时间切换时滞奇异系统的输入输出有限时间稳定和状态反馈镇定问题. 首先, 给出了连续时间切换时滞奇异系统输入输出有限时间稳定概念和相关引理; 其次, 利用模型依赖平均驻留时间方法和 Lyapunov 函数方法, 给出了切换时滞奇异系统是正则、脉冲自由且输入输出有限时间稳定的充分条件, 并设计状态反馈控制器, 使得闭环系统是输入输出有限时间稳定的.
相关内容
相关标签