2017年东北财经大学应用统计432统计学[专业硕士]考研仿真模拟题
● 摘要
一、简答题
1. 如果有百分之五的人是左撇子,而小明和他弟弟都是左撇子;那么小明和他弟弟都是左撇子这个事件的 概率是不是0. 05X0. 05=0. 00257?为什么?
【答案】不是。
显然,小明和他弟弟都是左撇子的事件不是独立的,所以这种计算方法错误。
当两个事件相互独立时,
当两个事件不相互独立时,⑴ ⑵
记事件A 为小明是左撇子,事件B 为小明的弟弟是左撇子。显然小明是左撇子和他弟弟是左
撇子这两个事件不相互独立,所以选择第二个公式计算小明和他弟弟都是左撇子这个事件的概率。
2. 解释多重判定系数和调整的多重判定系数的含义和作用。
【答案】(1)多重判定系数是多元回归中的回归平方和占总平方和的比例,它是度量多元回归方程拟合程度的一个统计量,反映了在因变量y 的变差中被估计的回归方程所解释的比例,其计算公式为
(2)调整的多重判定系数考虑了样本量(n )和模型中自变量的个数(k )的影响,这就使得
的值永远小于
而且的值不会由于模型中自变量个数的增加而越来越接近1,
其计算公式为
3. 单因素方差分析的实质是什么?并说明单因素方差分析的步骤。
【答案】单因素方差分析的实质是研宄一个分类型自变量对一个数值型因变量的影响。
单因素方差分析的步骤为:
(1)按要求检验的个水平的均值是否相等,提出原假设和备择假设。
(2)构造检验统计量,计算各样本均值(3)计算样本统计量
(4)统计决策。比较统计量 的值。若拒绝原假设;反之,不能样本总均值误差平方和 拒绝原假设。
4. 说明回归模型的假设以及当这些假设不成立时的应对方法。
【答案】(1)多元回归模型的基本假定有: ①自变量; 是非随机的、固定的,且相互之间互不相关(无多重共线性)
②误差项s 是一个期望值为0的随机变量,即
③对于自变
量
的所有
值 的方
差都相同,且不序列相关,
即
④误差项是一个服从正态分布的随机变量,且相互独立,即
(2)若模型中存在多重共线性时,解决的方法有:
第一,将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。
第二,如果要在模型中保留所有的自变量,那就应该:避免根据统计量对单个参数进行检验;对因变量Y 值的推断(估计或预测)限定在自变量样本值的范围内。
若模型中存在序列相关时,解决的方法有:如果误差项不是相互独立的,则说明回归模型存在序列相关性
,这时首先要查明序列相关产生的原因。如果是回归模型选用不当,则应改用适当的回归模型;如果是缺少重要的自变量,则应増加自变量;如果以上两种方法都不能消除序列相关性,则需采用迭代法、差分法等方法处理。
若模型中存在异方差性时,解决的方法有:当存在异方差性时,普通最小二乘估计不再具有最小方差线性估计的性质,而加权最小二乘估计则可以改进估计的性质。加权最小二乘估计对误差项方差小的项加一个大的权数,对误差项方差大的项加一个小的权数,因此加强了小方差性的地位,使离差平方和中各项的作用相同。
5. 在假设检验中,犯两类错误之间存在什么样的数理关系?是否有什么办法使得两类错误同时减少?
【答案】第一类错误是指原假设为真,拒绝原假设,又称弃真错误,犯这类错误的概率记为第二类错误是指原假设为假,接受原假设,又称取伪错误,犯这类错误的概率记为
由于两类错误是矛盾的,在其他条件不变的情况下,减少犯弃真错误的可能性
犯取伪错误的可能性
一办法只有增大样本容量,这样既能保证满足取得较小的
6. 概述相关分析与回归分析的联系与区别。
【答案】(1)相关分析和回归分析的联系
它们具有共同的研宄对象,都是对变量间相关关系的分析,二者可以相互补充。相关分析可以表明变量间相关关系的性质和程度,只有当变量间存在相当程度的相关关系时,进行回归分析去寻求变量间相关的具体数学形式才有实际的意义。同时,在进行相关分析时,如果要具体确定变量间相关的具体数学形式,又要依赖于回归分析,而且在多个变量的相关分析中相关系数的确定也是建立在回归分析基础上的。
(2)相关分析和回归分析的区别
①从研究目的上看,相关分析是用一定的数量指标(相关系数)度量变量间相互联系的方向和程度;回归分析却是要寻求变量间联系的具体数学形式,是要根据自变量的固定值去估计和预
势必增大
也就是说,
的大小和显著性水平的大小成相反方向变化。解决的唯又能取得较小的值。
测因变量的平均值。
②从对变量的处理看,相关分析对称地对待相互联系的变量,不考虑二者的因果关系,也就是不区分自变量和因变量,相关的变量不一定具有因果关系,均视为随机变量;回归分析是在变量因果关系分析的基础上研宄其中的自变量的变动对因变量的具体影响,必须明确划分自变量和因变量,所以回归分析中对变量的处理是不对称的,在回归分析中通常假定自变量在重复抽样中是取固定值的非随机变量,只有因变量是具有一定概率分布的随机变量。
7. 简述均值、众数和中位数三者之间的关系及其在实际中的应用。
【答案】(1)众数、中位数和平均数的关系
从分布的角度看,众数始终是一组数据分布的最高峰值,中位数是处于一组数据中间位置上的值,而平均数 则是全部数据的算术平均。
对于具有单峰分布的大多数数据而言,众数、中位数和平均数之间具有以下关系:
①如果数据的分布是对称的,众数中位数和平均数必定相等,即
②如果数据是左偏分布,说明数据存在极小值,必然拉动平均数向极小值一方靠,而众数和中位数由于是位 置代表值,不受极值的影响,因此三者之间的关系表现为:
③如果数据是右偏分布,说明数据存在极大值,必然拉动平均数向极大值一方靠,
则
(2)众数、中位数和平均数在实际中的应用
①众数是一组数据分布的峰值,不受极端值的影响。其缺点是具有不唯一性,一组数据可能有一个众数,也可能有两个或多个众数,也可能没有众数。众数只有在数据量较多时才有意义,当数据量较少时,不宜使用众数。 众数主要适合作为分类数据的集中趋势测度值。
②中位数是一组数据中间位置上的代表值,不受数据极端值的影响。中位数主要适合作为顺序数据的集中趋势测度值。
③平均数是对数值型数据计算的,而且利用了全部数据信息,它是实际中应用最广泛的集中趋势测度值。当数据呈对称分布或接近对称分布时,3个代表值相等或接近相等,这时则应选择平均数作为集中趋势的代表值。 但平均数的主要缺点是易受数据极端值的影响,对于偏态分布的数据,平均数的代表性较差。因此,当数据为偏态分布,特别是当偏斜程度较大时,可以考虑选择众数或中位数。
8. 说明计算统计量的步骤。
【答案】计算
(2)将
(3)将平方结果
统计量的步骤:
之差平方; 除以(1)用观察值减去期望值(4)将步骤(3)的结果加总,即得: