2018年曲阜师范大学教育科学学院312心理学专业基础综合之现代心理与教育统计学考研仿真模拟五套题
● 摘要
一、概念题
1. 概率
【答案】概率(probability ),概率论术语指,随机事件发生可能性大小度量指标。①概率描述性定义。随机事件A 在所有试验中发生可能性大小的量值,称为事件A 的概率,记为P (A )。如将一枚均匀硬币上抛足够多次,会发现“正面朝上”的事件出现的频率在0.5上下波动。这种频率稳定性从实践上表明随机事件的概率是客观存在的。②概率的精确定义。设P 是定义在“事件域”上的一个集合函数,若满足下列条件,则称之为概率:
a.P
两互不相容对一
切,则
(性质(ⅲ)称为完全可加性)。若P 是概率,则不可能事件的概率为零,即对任意事件有应当注意,若P (A )=0, 并不能说A —定是不可能事件,即不可能事件的概率一定是零,但概率为零的事件未必是不可能事件。这是由于P 是集合函数,可能在某些点集上(如有限个点)为零。同理,概率为1的事件,未必是必然事件。
2. 假设检验
【答案】在统计学中,通过样本统计量得出的差异作出一般性结论,判断总体参数之间是否存在差异,这种推论过程称假设检验。假设检验是推论统计中最重要的内容,它的基本任务就是事先对总体参数或总体分布形态做出一个假设,然后利用样本信息来判断原假设是否合理,从而决定是否接受原假设。检验的推理逻辑是一定概率保证下的反证法。一般包括四个步骤:(1)根
据问题要求提出原假设 (2)寻找检验统计量,用于提取样本中的用于推断的信息,要求在Ho 成立的条件下,统计量的分布已知且不包含任何未知参数;(3)由统计量的分布,计算“概率值”或确定拒绝域与接受域;(4)由具体样本值计算统计量的观测值,对统计假设作出判断。若Ho 的内容涉及到总体参数,称为参数假设检验,否则为非参数检验。
3. 检验的显著性水平
【答案】检验的显著性水平指在假设检验中,虚无假设正确时而拒绝虚无假设所犯错误的概率。在假设检验中有可能会犯错误,如果虚无假设正确却把它当成错误的加以拒绝,犯这类错误的概率用a 表示,a 就是假设检验中的显著性水平。通常选择α=0.05作为检验的显著性水平。也就是说每当实验结果发生的概率小于或等于0.05的时候,就拒绝虚无假设。
4. 个体
【答案】个体(individual )亦称“单位”、“样品”,统计学术语指总体中的每一个单位、样品或成员。是统计调查、试验或观测的最基本对象,是构成样本、总体的最小单元。在心理学研宄中,个体根据研宄目的不同,可以是人,也可以是人在某种实验条件下的某个反应,或每个实验结果、每个数据。
二、简答题
5. 简述检验的假设。 【答案】检验的假设主要有:
检验中的分类必须相互排斥,以保证每一个观测值被(1)分类相互排斥,互不包容。
被划分到更多的类别中去的情况。
(2)观测值相互独立。各个被试的观测值之间彼此独立,这是最基本的一个假定。
(3)期望次数的大小。为了努力使分布成为X2值合理准确的近似估计,每一个单元格中的期望次数应该至少在5个以上。
6. 简述使用积差相关系数的条件。
【答案】积差相关又较积矩相关,是求直线相关的基本方法。积差相关系数适合的情况如下:
(1)两列数据都是测量数据,而且两列变量各自总体的分布是正态的,即正态双变量。为了判断计算相关的两列变量其总体是否为正态分布,一般要根据已有的研究资料进行查询。如果没有资料查询,研究者应取较大样本分别对两变量作正态性检验。这里只要求保证双变量总体为正态分布,而对要计算相关系数的两样本的观测数据并不一定要求正态分布。
(2)两列变量之间的关系应是直线性的。如果是非直线性的双列变量,不能计算线性相关。判断两列变量之间的相关是否直线式,可以作相关散布图进行线性分析。相关散布图是以两列变量中的一列变量为横坐标,以另一变量为纵坐标,画散点图。如果呈椭圆形则说明两列变量
是线性相关的,如果散点是弯月状(无论弯曲度大小或方向),说明两变量之间呈非线性关系。
(3)实际测验中,计算信度涉及的积差相关时,分半的两部分测验须满足在平均数、标准差、分布形态、测题间相关、内容、形式和题数都相似的假设条件。
另外,积差相关要求成对的数据,即若干个体中每个个体都有两种不同的观测值。任意两个个体之间的观测值不能求相关。每对数据与其他对数据相互独立。计算相关的成对数据的数目不少于30对,否则数据太而缺乏代表性。
7. 方差分析的适用条件是什么? 主要用来检验什么?
【答案】进行方差分析时有一定的条件限制,数据必须满足以下几个基本假定条件,否则由它得出的结论将会产生错误。
划分到一个类别或另一个类别之中。此外,分类必须互不包容。保证不会出现某一观测值同时
(1)总体正态分布
方差分析同Z 检验及t 检验一样,也要求样本必须来自正态分布的总体。在心理与教育研究领域中,大多数变量是可以假定其总体服从正态分布,一般进行方差分析时并不需要去检验总体分布的正态性。当有证据表明总体分布不是正态时,可以将数据做正态转化,或采用非参数检验方法。
(2)变异的相互独立性
总变异可以分解成几个不同来源的部分,这几个部分变异的来源在意义上必须明确,而且彼此要相互独立。
(3)各处理内的方差一致
在方差分析中用MSw 作为总体组内方差的估计值,求组内均方MSw 时,相当于将各个处理中的样本方差合成,它必须满足的一个前提条件就是,各实验处理内的方差彼此无显著差异。这一假定若不能满足,原则上是不能进行方差分析的。
方差分析主要用来检验两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。
8. 试解释交互作用。
【答案】(1)下面是两个2×2的实验设计范式:
图1 2×2实验设计图示例
在实验甲中,A 因素从变化
为
还是时,无论
在还
是水平
,
与的差都
是说明A 因素的变化与或
称之为没有交互作用。
在实验乙中,在时时在时在时表明A 因素的变化与B 因即B 因素的变化与A 因素的不同水平有关;同样在无关。同样B 因素从变化为时,无论水平上,都等于3, 说明B 因素的变化与或无关。因此A ,B 两个因素彼此不影响,
素的水平也有关。在这种情况下,要考虑A ,B 两个因素的彼此影响,即“交互作用”,用AXB 表示。运用多因素方差分析,不仅能检验出各个因素对因变量的影响,还可以检验出因素与因素相结合共同发生的影响,即这种交互作用。
如要直观分析两个因素间是否有交互作用,还可以将上述情况制作成交互作用图,如图2所示。用图来表示交互作用时,一个是比较折线位置的高低,一个是比较折线在不同折点上的变化。基本原则是观察折线之问的平行程度。一般在交互作用图中,如果A , B 二因素间没有交
相关内容
相关标签