2017年内蒙古工业大学管理学院822应用统计学考研强化模拟题
● 摘要
一、简答题
1. 解释总平方和、回归平方和、残差平方和的含义,并说明它们之间的关系。
【答案】(1)总平方和(S^T)是实际观测值与其均值的离差平方和,即
(2)回归平方和(^狀)是各回归值
来解释的变差部分。
(3)残差平方和(SSE )是各实际观测值与回归值的离差平方和,即
称为误差平方和。
(4)三者之间的关系
2. 简述平稳序列和非平稳序列的含义。
【答案】(1)平稳序列是基本上不存在趋势的序列。这类序列中的观察值基本上在某个固定的水平上波动,虽然在不同的时间段波动的程度不同,但并不存在某种规律。其波动可以看成是随机的。
(2)非平稳序列包含趋势、季节性或周期性的序列,它可能只含有其中的一种成分,也可能是几种成分的组合。因此,非平稳序列可以分为有趋势的序列、有趋势和季节性的序列、几种成分混合而成的复合型序列。
3. 考虑总体参数的估计量,简述无偏估计量与最小方差无偏估计量的定义。
【答案】①无偏性(unbiasedness )是指估计量抽样分布的数学期望等于被估计的总体参数。设总体参数为所选择的估计量为如果则称为的无偏估计量。对于待估参数,不同的样本值就会得到不同的估计值。这样,要确定一个估计量的好坏,就不能仅仅依据某次抽样的结果来衡量,而必须由大量抽样的结果来 衡量。对此,一个自然而基本的衡量标准是要求估计量无系统偏差。尽管在一次抽样中得到的估计值不一定恰好 等于待估参数的真值,但在大量重复抽样时,所得到的估计值平均起来应与待估参数的真值相同,即希望估计量 的均值应等于未知参数的真值,这就是无偏性的要求。 ②最小方差无偏估计是在无偏估计类中使均方误差达到最小的估计量,即在均方误差
是的一个无偏估计量,都有
第 2 页,共 56 页 与实际观测值的均值y 的离差平方和,即其反映了在y 的总变差中由于x 与y 之间的线性关系引起的y 的变化部分,它是可以由回归直线它是除了的线性影响之外的其他因素对变差的作用,是不能由回归直线来解释的变差部分。其又 最小意义下的最优估计,它是在应用中人们希望寻求的一种估计量。设若对于的任一方差存在的无偏估计量
则称是的一致最小方差无偏估计。
4. 全概率公式与逆概率公式分别用于什么场合?
【答案】(1)全概率公式为:
其中
,
是互不相容的事件且
如果对于某一复杂事件A 的概率,能够构造合适的完备事件组,使得这些事件的概率和给定这些事件下A 的条件概率较易于确定,就可以用全概率公式。
(2)逆概率公式也称贝叶斯公式,即
式中:表示完备事件组。
中每个事件的逆概率公式是要在事件A 已经发生的条件下来计算完备事件组
发生概率。
5. 在投掷一枚均匀硬币进行打赌时,出现正面时投掷者赢5元,出现反面时输3元,记投掷者赢钱数为X 。试写出此问题的样本空间
【答案】记赢钱数为
则的函数定义为:
则有
于是X 的概率分布为:
以及随机变量X 的定义和概率分布。 其中 为投掷后出现的两种结果,令
6. 给出在一元线性回归中:
(1)相关系数的定义和直观意义;
(2)判定系数的定义和直观意义;
(3)相关系数和判定系数的关系。
【答案】(1)相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。若
第 3 页,共 56 页
相关系数是根据总体全部数据计算的,称为总体相关系数,记为
称为样本相关系数,记为r 。样本
相关系数的计算公式为:
若是根据样本数据计算的,则
按上述计算公式计算的相关系数也称为线性相关系数,或称为相关系数。r 仅仅是x 与y 之间线性关系的一个度量,它不能用于描述非线性关系。这意味着,r=0只表示两个变量之间不存在线性相关关系,并不说明变量之间没有任何关系,它们之间可能存在非线性相关关系。变量之间的非线性相关程度较大时,就可能会导致r=0。因此,当r=0或很小时,不能轻易得出两个变量之间不存在相关关系的结论,而应结合散点图做出合理的答释。
(2)回归平方和占总平方和的比例称为判定系数,记为其计算公式为:
判定系数测度了回归直线对观测数据的拟合程度。
的取值范围是越接近于1, 表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用x 的变化来答释y 值变
差的部分就越多,回归直线的拟合程度就越好;反之,越接近于0, 回归直线的拟合程度就越差。
(3)相关系数和判定系数都是用来表明X 与Y 的关系,即X 对Y 的拟合程度。在一元线性回归中,相关系数实际上是判定系数的平方根。相关系数取值范围在卜之间。判定系数取值范围在[0, 1]之间。
7. 解释总体分布、样本分布和抽样分布的含义。
【答案】总体分布就是总体中所有个体关于某个变量(标志)的取值所形成的分布。假设X 为总体随机变量,那么总体分布就是指X 的分布。很显然,同一变量不同的总体或同一总体不同的变量,其分布是不同的。
样本分布就是样本中所有个体关于某个变量(标志)的取值所形成的分布。假设x 为总体随机变量X 在样本 中的体现,那么样本分布就是指x 的分布,或者说是关于《个观测值的分布。同样,同一变量不同的样本或同一 样本不同的变量,其分布是不同的。
一般意义上说,抽样分布就是样本统计量的概率分布,它由样本统计量的所有可能取值和与之对应的概率组 成。如果说样本分布是关于样本观测值的分布,那么抽样分布则是关于样本统计量的分布,而样本统计量是由样 本观测值计算而来的。具体地说,抽样分布就是从容量为W 的总体中抽取容量为n 的样本时,所有可能的样本 统计量所形成的分布。假设从容量为W 的有限总体中最多可以抽取m 个容量为n 的不同样本,那么把所有m 个样本统计值形成频率分布,就是抽样分布。可以说,抽样分布是研宄样本分布与总体分布之间的桥梁。
第 4 页,共 56 页