2017年西安交通大学统计学复试实战预测五套卷
● 摘要
一、简答题
1. 什么是方差分析?它与总体均值的检验或检验有什么不同?其优势是什么?
【答案】方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。总体均值的检验或Z 检验,一次只能研宄两个样本,如果要检验多个总体的均值是否相等,那么作这样的两两比较十分烦琐。而且,每次检验两个的做法共需进行的检验,如果
次不同
每次检验犯第I 类错误的概率都是0.05, 作多次检验会使犯第I 类错误的概
率相应增加,而方差分析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设。
方差分析不仅可以提高检验的效率,同时由于它是将所有的样本信息结合在一起,也増加了分析的可靠性。
2. 统计数据质量的基本标准是什么?
【答案】(1)准确:用数字语言来反映客观实际;(2)快速:统计信息服务必须具有时效性和紧迫性;(3)完整:调查单位没有遗漏,调查项目没有缺陷,资料数据齐全;(4)精练:统计信息具有针对性、有效性、精确性。
3. 说明回归模型的假设以及当这些假设不成立时的应对方法。
【答案】(1)多元回归模型的基本假定有: ①自变量③对于自变
量
④误差项是一个服从正态分布的随机变量,且相互独立,即(2)若模型中存在多重共线性时,解决的方法有:
第一,将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。 第二,如果要在模型中保留所有的自变量,那就应该:避免根据统计量对单个参数进行检验;对因变量Y 值的推断(估计或预测)限定在自变量样本值的范围内。
若模型中存在序列相关时,解决的方法有:如果误差项不是相互独立的,则说明回归模型存在序列相关性
,这时首先要查明序列相关产生的原因。如果是回归模型选用不当,则应改用适当的回归模型;如果是缺少重要的自变量,则应増加自变量;如果以上两种方法都不能消除序列相关性,则需采用迭代法、差分法等方法处理。
是非随机的、固定的,且相互之间互不相关(无多重共线性);
的方
差
都相同,且不序列相关,
即
的所有
值
②误差项s 是一个期望值为0的随机变量,即
若模型中存在异方差性时,解决的方法有:当存在异方差性时,普通最小二乘估计不再具有最小方差线性估计的性质,而加权最小二乘估计则可以改进估计的性质。加权最小二乘估计对误差项方差小的项加一个大的权数,对误差项方差大的项加一个小的权数,因此加强了小方差性的地位,使离差平方和中各项的作用相同。
4. 二项分布与超几何分布的适用场合有什么不同?它们的均值和方差有什么区别?
【答案】(1)从理论上讲,二项分布只适合于重复抽样(即从总体中抽出一个个体观察完后放回总体,然后再抽下一个个体)。但在实际抽样中,很少采用重复抽样。不过,当总体的元素数目况很大而样本量, 相对于AT 来说很小时,二项分布仍然适用。
但如果是采用不重复抽样,各次试验并不独立,成功的概率也互不相等,而且总体元素的数目很小或样本量 «相对于W 来说较大时,二项分布就不再适用,这时,样本中“成功”的次数则服从超几何概率分布。
(2)若X 服从二项分布若Y 服从超几何分布
则则
5. 要检验多个总体均值是否相等时,为什么不作两两比较,而用方差分析方法?
【答案】方差分析不仅可以提高检验的效率,同时由于它是将所有的样本信息结合在一起,也增加了分析的可靠性。
检验多个总体均值是否相等时,如果作两两比较,则需要进行多次的检验。随着增加个体显
著性检验的次数,偶然因素导致差别的可能性也会増加(并非均值真的存在差别)。而方差分 析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设。
6. 说明条形图和直方图的区别和联系。
【答案】(1)条形图与直方图的区别
①形图是用条形的长度表示各类别频数的多少,其宽度则是固定的;直方图是用面积表示各组频数的多少, 矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义。
②由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。 ③条形图主要用于展示分类数据,而直方图则主要用于展示数值型数据。 (2)联系
两者都是用矩形表示数据分布情况;当矩形的宽度相等时,都是用矩形的高度来表示数据的分布情况。
二、计算题
7. 设随机变量相互独立且的概率密度为
的概率密度为
求:(1)(2)(3)
【答案】由题意可求得:
(1)(2)
(3)因为随机变量
相对独立,所以有:
8. 已知一组15名工人的资料,如表1所示。
表1 工人资料
相关内容
相关标签