当前位置:问答库>考研试题

2018年中国矿业大学(徐州)矿业工程学院860矿业运筹学之运筹学考研强化五套模拟题

  摘要

一、填空题

1. 运输问题任一基可行解非零分量的个数的条件是_____。

【答案】小于等于行数+列数-1

【解析】任意运输问题的基可行解可变量个数为:行数+列数一l 。然而基变量也可能等于0,所以运输问题 任一基可行解非零分量的个数小于等于行数+列数一1。 2. 网络中如果树的节点个数为z ,则边的个数为_____。

【答案】z-l

【解析】由树的性质可知,树的边数=数的节点数-1 3. 图G=(V ,E )有生成树的充分必要条件是_____。

【答案】G 是连通图

【解析】图G 是连通图,如果G 不含圈,那么G 本身是一个树,从而G 使它自身的一个支撑树。现设G 含圈,任取一个圈,从圈中任意地去掉一条边,得到G 的一个支撑子图Gl 。如果Gl 不含圈,那么Gl 是G 的 一个支撑树,如果Gl 仍含圈,那么从Gl 中再任取一个圈,如此重复,最终可以得到G 的一个支撑子图Gk , 它不含圈,于是Gk 就是G 的一个支撑树。

4. 在用对偶单纯形法求解某线性规划问题时, 当进基变量x i 确定后,出基变量的选取原则是:_____。

【答案】

二、简答题

5. 试将Norback 和love 提出的几何法与C 一W 节约算法进行比较。

【答案】(1)几何法:首先找出凸包,然后考查以不在旅行线路上的点为角顶,以线路上的点的连线为对边的角的大小,选出最大者所对应的角顶,插入到旅行线路中,反复进行直至形成哈密尔顿回路。

(2)C 一W 节约算法:首先以某一点为基点,确定初始解,然后考查基点之外的其它点的连线所构成的弧的 节约值的大小,选出节约值最大者所对应的弧,插入到旅行线路中,直至旅行线路中包含所有的点。

6. 简述对偶问题的“互补松弛性”。

【答案】互补松弛性:若

当且仅当为

最优解。

分别是原问题和对偶问题的可行解。那么

7. 考虑一个(线性)目标规划在计算机上求解的问题。假设手头只有一个线性规划的求解软件,想要仅仅 借助该软件来实现对目标规划的求解,请问你的策略是什么(不超过200字)?

【答案】想要仅仅借助该软件来实现对目标规划的求解,则应按如下步骤进行。

先以第一级目标为目标函数,以原来的约束为约束,求解一个线性规划; 其次,将己经实现的第一个目标作 为一个附加约束,以第二级目标为目标函数,再求解一个线性规划。以此类推,逐次求解k 个线性规划(k 为优先级的个数),即可求出目标规划的满意解。

8. 考虑两个企业的资源整合问题。如果每个单位单独组织生产,各自的效益和,往往小于把两个单位的生 产要素进行重组,然后再统筹生产带来的收益高。因此,资产重组,往往能够带来“双赢”的格局,企业自身也 希望通过合并,做大做强。问题是,每个企业可能会故意夸大其利润水平,从而希冀分得更多的合作收益。请谈谈你的设想,用以协调 其中可能出现的问题(不超过300字,可用符号表述你的想法)?

【答案】让两个企业单独汇报独立生产能获得的利润,分别记为z 1、z 2。如果z 1+z2≦2成之,则将合作后的额外收益z-(z 1+z2),按照z 1、z 2的比例进行分配。这样的分配方式,两个企业说真话,是一个均衡策略。

三、计算题

9. 某修理店只有一个修理工人,来修理的顾客到达次数服从普阿松分布,平均每小时4人,修理时间月从负指数分布,平均需6min 。求:

(1)修理店空闲时间概率; (2)店内有3个顾客的概率; (3)店内至少有一个顾客的概率; (4)在店内顾客平均数; (5)在店内平均逗留时间; (6)等待服务的顾客平均数; (7)平均等待修理(服务)时间; (8)必须在店内消耗巧min 以上的概率。

(9)如店内已有3个顾客,那么后来的顾客即不再排队,其他条件不变,试求: ①店内空闲的概率; ②各运行指标

(10)若顾客平均到达率增加到每小时12人,仍为普阿松流,服务时间不变,这时增加了一

个工人。

①根据③求望值。

【答案】该系统为M/M/1模型,

(9)此系统为M/M/1/N/∞排队模型,由题设知N=3,

①店内空闲的概率为

(10)①

队列将越来越长,所以要增加工人。

②增加一个工人后,此系统变成M/M/2排队系统,此时计算。 (11)

的值说明增加工人的原因;

,求店内顾客数的期

②增加工人后求店内空闲概率,店内有2个或更多顾客(即工人繁忙)的概率; (11)如服务时间服从正态分布,数学期望仍为6 min ,方差

,系统的流入量大于流出量,显然