当前位置:问答库>论文摘要

题目:高光谱卫星遥感图像压缩感知若干关键技术研究

关键词:卫星遥感,压缩感知,稀疏表示,投影矩阵优化,图像重构

  摘要



卫星遥感技术将人们研究地球表面信息的能力由陆地延伸到外太空。随着测谱学技术(Spectroscopy)的发展,卫星遥感进入了高光谱时代。窄波段、完整连续的光谱信息极大地提高了人们认识世界的能力,使其在海洋遥感、植被研究、地质勘探、大气和环境监测以及军事侦察等方面获得了广泛应用。然而,带来便利的同时,该技术也向遥感领域的研究提出了新的挑战。如有限资源下的海量数据采集、传输、存储等问题。压缩感知(Compressed Sensing, CS)是一种基于低维空间、欠采样的非相关观测实现高维信号感知的方法。本文针对压缩感知理论应用在高光谱卫星遥感过程中的三个主要问题:稀疏表示、投影矩阵、图像重构进行了深入研究。

论文的主要研究工作及创新点如下:

首先,针对高光谱卫星遥感图像的稀疏表示问题,分析了高光谱卫星遥感图像的空间相关性与谱间相关性,提出了一种基于字典学习的卫星遥感图像CS稀疏约束构造方法。利用前向搜索的自适应波段聚类,提升训练样本的代表性和差异性。从聚类结果中,随机抽取样本组成训练集和验证集。利用非负矩阵分解(Non-negative Matrix Factorization, NMF)的思想,训练得到适合高光谱卫星遥感图像的过完备字典,用学习得到的字典构成CS系数约束条件。验证集验证了字典的泛化能力。与基于调和分析的方法比较验证了所提出内容的有效性。

其次,针对高光谱卫星遥感CS系统的投影矩阵构造问题,研究了投影矩阵需满足的必要条件互相关系数及其变型,指出互相关系数的Welch边界,得到了理想的优化目标。提出了一种Gram矩阵约束和矩阵函数优化逼近交替执行的投影矩阵优化方法。该算法分为两步:一是利用阈值函数约束Gram矩阵非对角线元素,使投影矩阵与字典的互相关系数逼近Welch界;二是采用秩2校正得到Hessian阵逆近似去修正梯度搜索方向。两个步骤交替执行,直到解出符合优化要求的投影矩阵。实验结果表明,当信号稀疏度或观测数据相同时,本文算法的重构结果优于同类算法。

然后,针对高光谱卫星遥感CS系统的图像重构问题,研究分析了CS图像重构的基本过程,指出图像重构本质是约束优化问题。提出了一种基于增广拉格朗日法(Augmented Lagrangian Method, ALM)和谱段预测器的CS遥感图像重构方法。该方法在全变差(Total Variation, TV)模型和稀疏约束条件基础上,建立图像重构目标。采用布雷格曼分裂法(Bregman Operator Splitting, BOS)增加一个内积项来解除变量与系数矩阵之间的耦合,交替乘子的求解增广Lagrange代价函数,构成高精度、鲁棒的单帧图像重构算法。针对高光谱卫星遥感图像具有较高谱间相关性的特点,利用当前帧的地物判定和光谱曲线信息预测下一帧的数据作为单帧图像重构算法的初始值,提高算法的效率。与同类算法相比,本文算法兼顾了精确性、鲁棒性和高效性。

最后,针对CS理论在卫星高光谱遥感成像中的实现问题,设计了实验验证方案,模拟高光谱卫星遥感图像压缩感知的过程,建立仿真实验系统及综合验证实验流程。实验各阶段结果以及综合对比表明了本文方法的有效性。