当前位置:问答库>考研试题

2017年新疆农业大学统计学考研复试核心题库

  摘要

一、简答题

1. 什么是同度量因素?同度量因素在编制加权综合指数中有什么作用?

【答案】在统计学中,一般把相乘以后使得不能直接相加的指标过渡到可以直接相加的指标的那个因素,称为同度量因素或同度量系数。

在编制指数时,对于不能直接相加的指标,可通过同度量因素把指标过渡到具有可加性。

2. 简述复合型时间序列的预测步骤。

【答案】复合型序列是指含有趋势性、季节性、周期性和随机成分的序列。对这类序列预测方法通常是将时间序列的各个因素依次分解出来,然后再进行预测,分解法预测通常按下面的步骤进行:

(1)确定并分离季节成分。计算季节指数,以确定时间序列中的季节成分。然后将季节成分从时间序列中分离出去,即用每一个时间序列观测值除以相应的季节指数,以消除季节性;

(2)建立预测模型并进行预测。对消除了季节成分的时间序列建立适当的预测模型,并根据这一模型进行预测;

(3)计算出最后的预测值。用预测值乘以相应的季节指数,得到最终的预测值。

3. 分层抽样与整群抽样有何异同?它们分别适合于什么场合?

【答案】(1)相同点:分层抽样和整群抽样都是需要事先按某一标志对总体进行划分的随机抽样。

不同点主要在于:分层抽样的划分标志与调查标志有密切关系,而整群抽样的划分标志不一定与调查标志有 关;分层抽样在总体的每个层内随机抽样,而整群抽样在总体全部群体中随机抽取一部分群体;比较计算公式可知,分层抽样的抽样误差取决于各层总体方差的平均数,而整群抽样的抽样误差取决于总体的群间方差;分层抽 样的目的(优点)主要是缩小抽样误差,满足推断各子总体数量特征的需要,而整群抽样的目的(优点)主要是 扩大抽样单位,简化抽样组织工作。

(2)适用场合:分层抽样用于层间差异大而层内差异小时,以及为了满足分层次管理决策需要时;整群抽样用于群间差异小而群内差异大时,或只有以群体为抽样单位的抽样框时等。

4. 在显著性检验过程中,经常遇到值这一概念,试回答以下问题:

(1)值能告诉我们什么信息?

(2)当相应的值较小时为什么要拒绝原假设?

(3)显著性水平与值有何区别?

【答案】如果原假设为真,所得到的样本结果会像实际观测结果那么极端或更极端的概率,

称为值,也称为观察到的显著性水平。

(1)值是当原假设正确时,得到所观测的数据的概率。如果原假设是正确的话,值告诉我们这样的观测数据会有多么的不可能得到。相当不可能得到的数据,就是原假设不对的合理证据。

(2)值是反映实际观测到的数据与原假设明实际观测到的数据与之间不一致程度的一个概率值。值越小,说之间不一致的程度就越大,检验的结果也就越显著。

(3)是犯第I 类错误的上限控制值,它只能提供检验结论可靠性的一个大致范围,而对于一个特定的假设检验问题,却无法给出观测数据与原假设之间不一致程度的精确度量。也就是说,仅从显著性水平来比较,

如果选择的值相同,

所有检验结论的可靠性都一样。而值可以测量出样本观测数据与原假设中假设的值的偏离程度。

5. 什么叫变异、变量和变量值,试举例说明。

【答案】标志在同一总体不同总体单位之间的差别称为变异。例如:人的性别标志表现为男、女;年龄标志表现为20岁、30岁等。

变异标志又称为变量,是说明现象某种特征的概念,其特点是从一次观察到下一次观察结果会呈现出差别或 变化。变量的具体取值称为变量值。具体包括:

(1)分类变量,如“性别”就是分类变量,其变量值为“男”或“女”;

“二等品”、“三等品”、(2)顺序变量,如“产品等级”就是顺序变量,其变量值可以为“一等品”、

“次品”等;

(3)数值型变量,如“年龄”是连续数值型变量,变量值为非负数;“企业数”是离散数值型变量,变量 值为 1,2,……

6. 回归分析结果的评价。

【答案】对回归分析结果的评价可以从以下四个方面入手:

(1)所估计的回归系数的符号是否与理论或事先预期相一致;

(2)如果理论上认为

归方程也应该如此;

(3)用判定系数来回答回归模型在多大程度上解释了因变量取值的差异;

(4)考察关于误差项的正态性假定是否成立。因为在对线性关系进行检验和对回归系数进行?检验时,

都要求误差项服从正态分布,否则,所用的检验程序将是无效的。检验正态性的

简单方法是画出残差的直方图或正态概率图。

之间的关系不仅是正的,而且是统计上显著的,那么所建立的回

二、计算题

7. 为了研宄不同类型的贫困地区人们的收入状况,现分别在两个地区进行了抽样,获取他们人均年收入数 据如表所示。

(1)在

(2)在下,能否认为地区2的收入水平高于地区1? 下,两个地区人均收入方差是否相等?

(3)前面分析结果的现实统计意义是什么?

【答案】(1)首先检验两地区的人均收入方差是否显著相等。假设检验为:

检验统计量的值为:

这是双侧检验,在

入方差显著不相等。

下面在两总体方差未知但不相等的条件下,对均值进行检验。

建立假设:

计算检验统计量为:

自由度为:

下,所以拒绝原假设,即两地区人均收

取自由度

时,所以不能拒绝原假设,这是单侧检验,

不能认为地区2的收入水平高于地区1。

(2)由(1)中假设检验知:两个地区人均收入方差不相等。

(3)由(1) (2)可以看到,不同类型的贫困地区具有不同的收入状况,因此不能用一种