当前位置:问答库>考研试题

2017年南京航空航天大学理学院618量子力学之量子力学教程考研题库

  摘要

一、简答题

1. 写出测不准关系,并简要说明其物理含义。 【答案】测不准关系

物理含义:若两个力学量不对易,则它们不可能同

时有确定的测值。

2. 试比较粒子和波这两个概念在经典物理和量子力学中的含义。

【答案】对于粒子,共同点是颗粒性,即是具有一定质量、电荷等属性的客体;不同点是经典粒子遵循经典决定论,沿确定轨道运动,微观粒子不遵循经典决定论,无确定轨道运动。 对于波,共同点是遵循波动规律,具有相干迭加性;不同点是经典波是与某个客观存在的物理量的周期性变化在空间中的传播相联系的量子力学中的物质波不存在这样的物理量,它只是一种几率波。

3. 试表述量子态的叠加原理并说明叠加系数是否依赖于时空变量及其理由. 【答案】量子态的叠加原理:若仍然为粒子可能处于的态.

叠加系数不依赖于时空变量. 因为量子态的叠加原理已经明确说明了是任意线性组合,即表明了叠加系数不依赖于任何变量.

4. 完全描述电子运动的旋量波函数为

分别表示什么样的物理意义。

【答案

表示电子自旋向

表示电子自旋向上

的几率。

位置

处的几率密度

试述

为粒子可能处于的态,那么这些态的任意线性组合

5. 分别说明什么样的状态是束缚态、简并态与负宇称态?

【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。

6. 自旋可以在坐标表象中表示吗?

【答案】自旋是内禀角动量,与空间运动无关,故不能在坐标空间表示出来。

7. 非相对论量子力学的理论体系建立在一些基本假设的基础上,试举出二个以上这样的基本假设,并简述之。

【答案】(1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。

(2)力学量用厄密算符表示。如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表示式中将动量换为算符数。

(3)将体系的状态波函数

用算符的本征函数展开:

则在

盔中测量力学量得到结果为

(4)体系的状态波函数满足薛定谔方程

其中是体系的哈密顿算符。

的几率是

得到结果在

范围内的几率是

得出。表示力学量的算符组成完全系的本征函

(5)在全同粒子所组成的体系中,两全同粒子相互调换不改变体系的状态(全同性原理)。 以上选三个作为答案。

8. 试设计一实验,从实验角度证明电子具有自旋,并对可能观察到的现象作进一步讨论。 【答案】让电子通过一个均匀磁场,则电子在磁场方向上有上下两取向,再让电磁通过一非均匀磁场,则电子分为两束。

9. 写出电子自旋的二本征值和对应的本征态。 【答案】

10.现有三种能级【答案】一维谐振子.

请分别指出他们对应的是哪些系统。

对应一维无限深势阱;

对应

对应中心库仑势系统,例如氢原子;

二、证明题

11.(1)对于任意的厄米算符,证明其本征值为实数. (2)证明厄米算符属于不同本征值的本征函数彼此正交. (3)对于角动量算符

证明它是厄米算符,并且求解其本征方程.

因为存在

【答案】(1)证:对于厄米算符

所以即本征值为实

(2)证:因为而(3)因为

所以

即正交

具有周期性,

所以

设本征方程为

其中为本征值,上式可改写为

易解出即为厄米算符。

C 为积分常数,可由归一化条

件决定. 又因为波函数满足周期性边界条件的限制,

由此可得数记为

即为其本征函数. 相应的本征方程为

12.—粒子处于势场V (x )中,且势V (x )没有奇点. 假设相应的本征能量色【答案】由题意

并在方程两边同时积分

则由正交归一化条件有

考虑到哈密顿算符的厄米算符性质并利用式Ⅱ有设粒子本征波函数完备集为

试证明这两个波函数对应的态矢正交.

是束缚态的波函数,

即角动量z 分量的本征值为

是量子化的,相应本征函

再利用归一化条件可得