2018年甘肃省培养单位近代物理研究所811量子力学考研基础五套测试题
● 摘要
一、简答题
1. 电子在位置和自旋表象下,波函数【答案】
利用
的几率密度;
表示粒子在
如何归一化?解释各项的几率意义。
进行归一化,其中
:
处
的几率密度。
表示粒子在
|
处
2. 何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应?
【答案】在强磁场中,原子发出的每条光谱线都分裂为三条的现象称为正常塞曼效应。在弱磁场中,原子发出的
每条光谱线都分裂为
条(偶数)的现象称为正常塞曼效应。原子置于外
电场中,它发出的光谱线会发生分裂的现象称为斯塔克效应。
3. 反常塞曼效应的特点,引起的原因。 【答案】原因如下:
(1)碱金属原子能级偶数分裂; (2)光谱线偶数条;
(3)分裂能级间距与能级有关; (4)由于电子具有自旋。
4. 已知为一个算符满足如下的两式么正算符?
【答案】满足关系式(a )的为厄密算符,满足关系式(b )的为幺正算符。
5. 有人说“在只考虑库仑势场情况下,氢原子原有本征态都存在实的轨道波函数”,你是否同意这种说法, 简述理由。
【答案】不同意。因为
6. 厄米算符的本征值与本征矢
为实函数,但
分别具有什么性质?
可以为复函数。
问何为厄密算符?何为
【答案】本征值为实数,本征矢为正交、归一和完备的函数系。
7. 写出测不准关系,并简要说明其物理含义。 【答案】测不准关系时有确定的测值。
物理含义:若两个力学量不对易,则它们不可能同
8. 描写全同粒子体系状态的波函数有何特点?
【答案】描写全同粒子体系状态的波函数只能是对称的或者反对称的,它们的对称性不随时间变化。
9. 写出泡利矩阵。 【答案】
10.写出由两个自旋态矢构成的总自旋为0的态矢和自旋为1的态矢。 【答案】总自旋为0:总自旋为1:
二、证明题
11.设在电子的某自旋态中,测量自旋的x 分量和 >> 分量的平均值皆为零,则测电子自旋分量的平均值一定为
【答案】设在
或
证明这一点。
表象中,这自旋态的表示为:
则由自旋x 分量和; y 分量算符的表本为:
根据题给条件,有:
由此得:即:
或
要么自旋朝下
即都为自旋分量的本征态。在
这就意味着,此态要么是自旋朝上
这两个本征态中,
测量自旋分量的平无值分别为
和
12.试证明,表象经么正变换后,不改变算符本征值。 【答案】设可得:
(其中
为幺正变换,则:
)
可见,本征值不变。
三、计算题
13.两个互作用可以忽略的电子在一维线性谐振子势场中运动,写出系统基态和第一激发态的总波函数。
【答案】单电子波函数的空间部分:
二电子总波函数应为反对称: 基态:第一激发态:
14.一质量为m 的粒子,可在宽为a 无限深势阱当中自由运动. 在t=0的初始时刻其波函数为
其中A 为实常数. (1)求A 使平均值?
(3)求t 时刻的波函数
满足归一化条件.
(2)如果进行能量测量,则能得到哪些能量值? 相应取这些能量值的概率又是多少? 再计算能量的
【答案】(1)无限深方势阱中粒子的本征波函数为初始时刻波函数可化为
由归一化条件有
(2)无限深方势阱中粒子的本征能量为
解得
.
故粒子可能测得能量即
相关内容
相关标签