2018年甘肃省培养单位近代物理研究所811量子力学考研强化五套模拟题
● 摘要
一、简答题
1. 写出电子在外电磁场【答案】
中的哈密顿量。
2. 非相对论量子力学的理论体系建立在一些基本假设的基础上,试举出二个以上这样的基本假设,并简述之。
【答案】(1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。
(2)力学量用厄密算符表示。如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表示式中将动量换为算符数。
(3)将体系的状态波函数
用算符的本征函数展开:
则在
盔中测量力学量得到结果为
(4)体系的状态波函数满足薛定谔方程
其中是体系的哈密顿算符。
的几率是
得到结果在
范围内的几率是
得出。表示力学量的算符组成完全系的本征函
(5)在全同粒子所组成的体系中,两全同粒子相互调换不改变体系的状态(全同性原理)。 以上选三个作为答案。
3. 波函数【答案】
与
是否描述同一状态?
描写的相对概率分布完全相同,描写的是同一状态。
的对易关系.
4.
写出角动量的三个分量【答案】这三个算符的对易关系为
5. 反常塞曼效应的特点,引起的原因。 【答案】原因如下:
(1)碱金属原子能级偶数分裂;
(2)光谱线偶数条;
(3)分裂能级间距与能级有关; (4)由于电子具有自旋。
6. 现有三种能级【答案】
请分别指出他们对应的是哪些系统。
对应一维无限深势阱;
对应
对应中心库仑势系统,例如氢原子;
一维谐振子.
7. 自旋可以在坐标表象中表示吗?
【答案】自旋是内禀角动量,与空间运动无关,故不能在坐标空间表示出来。
8. 什么样的状态是定态,其性质是什么?
【答案】定态是能量取确定值的状态,其性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变
9. 简述波函数的统计解释。
【答案】波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。
10.描写全同粒子体系状态的波函数有何特点?
【答案】描写全同粒子体系状态的波函数只能是对称的或者反对称的,它们的对称性不随时间变化。
二、证明题
11.假设A 、B 、C 是三个矩阵,证明【答案】
12.设力学量A 不显含时间t ,证明在束缚定态下,【答案】设束缚定态为
即有:
因A 不显含时间t , 所以
所以
因而有:
三、计算题
13.(1)求算符【答案】⑴
即算符⑵则
不对易.
得证.
的对易关系. (2)证明
其中
14.(1)写出全同粒子体系的态所满足的交换对称性以及随时间演化的动力学方程; (2)考虑由2
个全同费米子(
表示出体系可能的状态。
【答案】(1)全同粒子系的波函数
:随时间演化的动力学方程
:(2)用
对称性波函数
;
反对称性波函数。其
)组成的体系,
设可能的单粒子态为
试用
表示出体系可能的状态如下:
15.氢原子处于状态(1)求轨道角动量的z
分量(3)求总磁矩【答案】⑴
的平均值。 的z 分量
(2)求自旋角动量的z
分量的平均值。
的平均值。