2018年甘肃省培养单位近代物理研究所811量子力学考研核心题库
● 摘要
一、简答题
1. 写出电子在外电磁场【答案】
2. 自旋可以在坐标表象中表示吗?
【答案】自旋是内禀角动量,与空间运动无关,故不能在坐标空间表示出来。
3. 如果算符表示力学量那么当体系处于的本征态时,问该力学量是否有确定的值? 【答案】是,
其确定值就是在本征态的本征值。
4. 量子力学中的可观测量算符为什么应为厄米算符?
【答案】实验上可以观测的力学量的平均值必须为实数,而体系在任何量子态下平均值为实数的算符必为厄米算符,因此这要求可观测量算符应为厄米算符。
5. 试设计一实验,从实验角度证明电子具有自旋,并对可能观察到的现象作进一步讨论。 【答案】让电子通过一个均匀磁场,则电子在磁场方向上有上下两取向,再让电磁通过一非均匀磁场,则电子分为两束。
6. 分别写出非简并态的一级、二级能量修正表达式。 【答案】
7. 何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应?
【答案】在强磁场中,原子发出的每条光谱线都分裂为三条的现象称为正常塞曼效应。在弱磁场中,原子发出的
每条光谱线都分裂为
条(偶数)的现象称为正常塞曼效应。原子置于外
电场中,它发出的光谱线会发生分裂的现象称为斯塔克效应。
8. 斯特恩—革拉赫实验证明了什么? 【答案】(1)半整数内禀角动量在存在。 (2)空间量子化的事实。
(3)电子自旋磁矩需引入2倍关系。
第 2 页,共 44 页
中的哈密顿量。
9. 简述波函数和它所描写的粒子之间的关系。
【答案】微观粒子的状态可用一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。 微观粒子的状态波函数则在
用算符的本征函数
展开
态中测量粒子的力学量^
得到结果为
的几率是
得到结果在
范围内的几率
为
10.写出泡利矩阵。 【答案】
二、证明题
11.(1)设(2)试将【答案】(1)
与pauli 算符对易,证明
表示成
的线性叠加. 其中为单位算符.
利用
化简可得:
(2)
12.处于某种量子环境下的电子的哈密顿量具有如下形式:
其中,m 是电子质量,【答案】体系哈密顿量:
第 3 页,共 44 页
为电子动量算符,算符定义为且和B 都
为实常数,证明电子角动量算符的分量为该体系的守恒量。
其中,显然有
设:
于是有:
其中:
同理,有:
因此,有:
利用类似的方法,可得:
因此,有:
综上所述,可以得到
也即
故为体系守恒量,得证。
三、计算题
13.对于描述电子自旋的泡利矩阵(1)在表象中求(2)若明其物理意义.
(3)对于两个电子组成的体系,若用本征态,证明态矢量【答案】(1)在由
和由
表象中,
很容易求得
分别表示单电子自旋平方和自旋z 分量的共同
是体系总自旋平方的本征态.
的本征值与本征矢:
1,说的本征值为±
的归一化本征函数. 为某一方向余弦,证明算符
的本征方程
第 4 页,共 44 页
相关内容
相关标签