当前位置:问答库>考研试题

2017年湖南师范大学物理与信息科学学院725量子力学之量子力学教程考研仿真模拟题

  摘要

一、简答题

1. —个量子体系处于定态的条件是什么?

【答案】量子体系处于定态的条件是哈密顿算符不显含时间或能量取确定值。

2. 量子力学中的可观测量算符为什么应为厄米算符?

【答案】实验上可以观测的力学量的平均值必须为实数,而体系在任何量子态下平均值为实数的算符必为厄米算符,因此这要求可观测量算符应为厄米算符。

3. 什么是定态?若系统的波函数的形式为处于定态?

【答案】体系能量有确定的不随时间变化的状态叫定态,定态的概率密度和概率流密度均不随时间变化. 不是,体系能量有E 和-E 两个值,体系能量满足一定概率分布而并非确定值.

4. 自发辐射和受激辐射的区别是什么?

【答案】自发辐射是原子处于激发能级时,可能自发地跃迁到较低能级去,并发射出光子的过程;

受激辐射是处于激发能级低能级

的原子被一个频率为

的光子照射,受激发而跃迀到较

同时发射出一个同频率的受激光子的过程。受激辐射的光子是相干的,自发辐射是随机

是否

的。

5. 厄米算符的本征值与本征矢

分别具有什么性质?

【答案】本征值为实数,本征矢为正交、归一和完备的函数系。

6. 反常塞曼效应的特点,引起的原因。 【答案】原因如下:

(1)碱金属原子能级偶数分裂; (2)光谱线偶数条;

(3)分裂能级间距与能级有关;

(4)由于电子具有自旋。

7. 以能量这个力学量为例,简要说明能量算符和能量之间的关系。 【答案】在量子力学中,能量

用算符表示,

当体系处于某个能量态

的作用是得到这一本征值,即

当体系处于一般态

第 2 页,共 42 页

的本征态时,算符对

的作

时,算符对态

,即用是得到体系取不同能量本征值的几率幅(从而就得到了相应几率)

8. 已知为一个算符满足如下的两式问何为厄密算符?何为么正算符?

【答案】满足关系式(a )的为厄密算符,满足关系式(b )的为幺正算符。

9. 写出泡利矩阵。 【答案】

10.

写出角动量的三个分量【答案】这三个算符的对易关系为

的对易关系.

二、证明题

11.粒子自旋处于

的本征态

【答案】易知但是

,(常数)

同理,可得

因此:

12.(1)对于任意的厄米算符,证明其本征值为实数. (2)证明厄米算符属于不同本征值的本征函数彼此正交. (3)对于角动量算符

证明它是厄米算符,并且求解其本征方程.

因为存在

(2)证:因为而(3)因为

所以

即正交

第 3 页,共 42 页

试证明的不确定关系

所以有:

【答案】(1)证:对于厄米算符

所以

即本征值为实

具有周期性,

所以

设本征方程为

其中为本征值,上式可改写为

易解出

C 为积分常数,可由归一化条

即为厄米算符。

件决定. 又因为波函数满足周期性边界条件的限制,

由此可得数记为

即为其本征函数. 相应的本征方程为

即角动量z 分量的本征值为

是量子化的,相应本征函

再利用归一化条件可得

三、计算题

13.假设一个定域电子(忽略电子轨道运动)在均匀磁场中运动,磁场B 沿z 轴正向,电子磁矩在均匀磁场中的势能:

表示;

(1)求定域电子在磁场中的哈密顿量,并列出电子满足的薛定谔方程:电子轨道运动,

此时T=0。

求t >0时,自旋的平均值。提示:

提示:忽略

这里

为电子的磁矩;

自旋用泡利矩阵

(2)假设t=0时,电子自旋指向x 轴正向,即

(3)求t >0时,电子自旋指向y 轴负向,即【答案】(1)忽略电子轨道运动,是玻尔磁子。所以哈密顿为:

的几率是多少?

其中,

第 4 页,共 42 页