当前位置:问答库>考研试题

2017年天津大学管理与经济学部832运筹学基础之运筹学教程考研冲刺密押题

  摘要

一、选择题

1. 企业进行库存管理与控制的目标不包括以下( )。

A. 保证生产或销售的需要 B. 降低库存占用资金

C. 降低花在存储方面的管理费用 D. 较低的货损 【答案】D

【解析】货损与库存管理与控制无关,与采购的运输等其他环节有关。

2. 网络计划中的某工序(i ,j ),估计的最乐观时间为a ,最可能时间为m ,最保守时间为b ,则该工序的 期望工时和方差可以按下面( )计算。

【答案】A

3. 如果要使目标规划实际实现值不超过目标值,则相应的偏离变量应满足( )。

A.d 十>0; B.d 十=0; C.d 一=0; D.d 十>0且d 一>0 【答案】B

【解析】实际实现值不超过目标值,即.

,根据

,可知

4. 若f 是G 的一个流,K 为G 的一个割,且f 的流量等于K 的容量,则K 一定是( )。

A. 最大流 B. 最大割 C. 最小流 D. 最小割 【答案】D

【解析】网络从发点到收点的各通路中,由容量决定其通过能力,最小割集则是这些路中的咽喉部分,或者叫瓶口, 其容量最小,它决定了整个网络的最大通过能力。

二、判断题

5. 指派问题效率矩阵的每个元素乘以同一大于0的常数k ,将不影响最优指派方案。( )

【答案】√

【解析】效率矩阵每个元素乘以同一大于0的常数k ,即目标函数的系数同时增大k 倍,不会影响最优基的变化,故不影响最优指派方案。

6. 如果线性规划问题有最优解,则它对偶问题也一定有最优解。( )

【答案】√

【解析】由对偶定理知,原命题为真,且线性规划问题与它的对偶问题的最优值相等。

7. 若需将某工程项目工期缩短到了10天,简单可行的方法是:任意找出该项目网络中一条关键路线,采取 必要措施将其缩短到10天即可。

【答案】√

【解析】若网络计划图的计算工期大于上级要求的工期时,必须根据要求计划的进度,缩短工程项目的完工 工期。主要采取以下措施,增加对关键工作的投入,以便缩短关键工作的持续时间,实现工期缩短。 ①采取技术措施,提高工效,缩短关键工作的持续时间,使关键线路的时间缩短; ②采取组织措施,充分利用非关键工作的总时差,合理调配人力、物力和资金等资源。

8. 假如到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布。( )

【答案】√

,为时间[0,t]内到达系统的顾客数,则{N(t ),t ≥0}为参数λ的普阿松流【解析】设N (t )

的充要条件是: 相继到达时间间隔服从相互独立的参数为λ的负指数分布。

9. 已知y i *为线性规划问题的对偶问题的最优解,若y i *>0,则说明在最优生产计划中第i 种资源己经完全耗尽。( )

【答案】√

【解析】对偶问题互补松弛性质中中第i 种资源已经完全耗尽。

,表明在最优生产计划

三、证明题

10.设m*m对策的矩阵为

其中,当时,当i=j时,证明此对策的最优策略为

【答案】由题意知,

,所以A 没有鞍点,

故令最优混合策略,则