2018年太原理工大学物理与光电工程学院874量子力学之量子力学导论考研仿真模拟五套题
● 摘要
一、填空题
1. 称_____、_____、_____等固有性质完全相同的微观粒子为_____。
【答案】质量;电荷;自旋;全同粒子
2. 对氢原子,不考虑电子的自旋,能级的简并度为_____,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为_____。
【答案】
3. 玻恩关于波函数统计解释的基本论点是_____。
【答案】物质的本源是粒子;波动性是指微观粒子处于某一物理量值的统计几率
4. 二粒子体系,仅限于角动量涉及的自由度,有两种表象,分别为_____和_____; 它们的力学量完全集分别是_____和_____; 在两种表象中,各力学量共同的本征态分别是_____和_____。 【答案】耦合表象;非耦合表象
; 5.
为氢原子的波函数(不考虑自旋),【答案】主;角;磁;
6. 总散射截面Q 与微分散射截面【答案】
的关系是_____。
分别称为_____量子
数、_____量子数、_____量子数,它们的取值范分别为_____、_____、_____。
二、简答题
7. 什么是费米子? 什么是玻色子? 两者各自服从什么样的统计分布规律?
【答案】费米子是自旋为半奇数的粒子,玻色子是自旋为整数的粒子. 费米子遵守费米-狄拉克统计规律,玻色子遵从玻色-爱因斯坦统计规律.
8. 什么样的状态是定态,其性质是什么?
【答案】定态是能量取确定值的状态,其性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变
9. 电子在位置和自旋表象下,波函数【答案】
利用
的几率密度;
10.什么是定态?若系统的波函数的形式为处于定态?
表示粒子在
如何归一化?解释各项的几率意义。
进行归一化,其中
:
处
的几率密度。
问
是否
表示粒子在
|
处
【答案】体系能量有确定的不随时间变化的状态叫定态,定态的概率密度和概率流密度均不随时间变化. 不是,体系能量有E 和-E 两个值,体系能量满足一定概率分布而并非确定值.
11.分别写出非简并态的一级、二级能量修正表达式。 【答案】
12.自发辐射和受激辐射的区别是什么?
【答案】自发辐射是原子处于激发能级时,可能自发地跃迁到较低能级去,并发射出光子的过程;
受激辐射是处于激发能级低能级
的原子被一个频率为
的光子照射,受激发而跃迀到较
同时发射出一个同频率的受激光子的过程。受激辐射的光子是相干的,自发辐射是随机
的。
13.自旋可以在坐标表象中表示吗?
【答案】自旋是内禀角动量,与空间运动无关,故不能在坐标空间表示出来。
14.以能量这个力学量为例,简要说明能量算符和能量之间的关系。 【答案】在量子力学中,能量
用算符表示,
当体系处于某个能量态
的作用是得到这一本征值,即
当体系处于一般态
的本征态
时,算符对
的作
时,算符对态
用是得到体系取不同能量本征值的几率幅(从而就得到了相应几率),即
三、计算题
15.若两个中子的相互作用哈密顿为是什么。(设没有外场)
【答案】解法一:
设总自旋
则:
其中g 为作用常数,和
分别为两个中子的自
旋算符, 求分的本征值和本征函数。如果同时计入中子的空间波函数,则两中子体系的总波函数
而两中子的自旋波函数只有四种情况(即有4个本特征态)。 自选交换对称波函数:
自旋交换反对称波函数:
显然
与
对易,二者有共同的本征态:
即的本征值为
的对应波函数为
即的本征值为解法二:选择的本征态为对应特征值因为
时对应的函数为
表象(因为
(对应特征值的本征态,
),对应本征值
相互对易)。
(对应本征值本征态为
)。
对易,所以两中子的体系的波函数可以由的本征态的乘积构成如下四种情
况(结合全同粒子满足的波函数的对称性要求):
自旋交换对称态:
自旋交换反对称态:又因为: