当前位置:问答库>考研试题

2018年上海财经大学国际工商管理学院396经济类联考综合能力之工程数学—线性代数考研强化五套模拟题

  摘要

一、解答题

1.

已知

.

2. 设n 维列向

【答案】

线性无关,其中S 是大于2的偶数. 若矩

试求非齐次线性方程组

的通解.

方程组①化为:

整理得

,由

线性无关,得

【答案】

由题意知

显然①与②同解.

下面求解②:对②的增广矩阵作初等行变换得(注意X 是偶数)

从而组的基础解系为

数.

3. 已知A 是3阶矩阵

有无穷多解.

易知特解为

从而②的通解,

即①的通解为

对应齐次方程

A 为任意常

是3维线性无关列向量,且

(Ⅰ)写出与A 相似的矩阵B ; (Ⅱ)求A 的特征值和特征向量:

(Ⅲ)求秩

【答案】(Ⅰ)由于

则有

线性无关,故P 可逆.

即A 与B 相似.

(Ⅱ

)由

A 的特征值为-1, -1,-1.

对于矩阵B ,

所以

可知矩阵B 的特征值为-1, -1,-1, 故矩阵

得特征向量

那么由:

是A 的特征向量,于是A 属于特征值-1

的所有特征向量是

全为0.

(Ⅲ

)由

芄中

4.

(1)计算行列式∣A ∣;

(2)当实数a 为何值时,

线性方程组【答案】

有无穷多解?并求其通解.

若要使得原线性方程组有无穷多解,

则有及得

此时,

原线性方程组增广矩阵为

进一步化为行最简形得

可知导出组的基础解系为

非齐次方程的特解为

故其通解为k 为任意常

数.

二、计算题