2017年江西师范大学物理与通信电子学院849量子力学之量子力学教程考研题库
● 摘要
一、简答题
1. 有人说“在只考虑库仑势场情况下,氢原子原有本征态都存在实的轨道波函数”,你是否同意这种说法, 简述理由。
【答案】不同意。因为为实函数,但可以为复函数。
2. 坐标分量算符与动量分量算符的对易关系是什么?并写出两者满足的测不准关系。 【答案】对易关系为
测不准关系为
3. 如果一组算符有共同的本征函数,且这些共同的本征函数组成完全系,问这组算符中的任何一个是否和其余的算符对易? 【答案】不妨设这组算符为
.
则对任意波函数
完全系为有:
可见,这组算符中的任何一个均和其余的算符对易。
4. 非相对论量子力学的理论体系建立在一些基本假设的基础上,试举出二个以上这样的基本假设,并简述之。
【答案】(1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。
(2)力学量用厄密算符表示。如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表示式中将动量换为算符数。
(3)将体系的状态波函数
用算符的本征函数展开:
则在
盔中测量力学量得到结果为
(4)体系的状态波函数满足薛定谔方程
其中是体系的哈密顿算符。
的几率是
得到结果在
范围内的几率是
得出。表示力学量的算符组成完全系的本征函
依题意
(5)在全同粒子所组成的体系中,两全同粒子相互调换不改变体系的状态(全同性原理)。 以上选三个作为答案。
5. 完全描述电子运动的旋量波函数为
分别表示什么样的物理意义。
【答案
】
表示电子自旋向
下
表示电子自旋向上
的几率。
位置
在
处的几率密度
;
试述
及
6. 试表述量子态的叠加原理并说明叠加系数是否依赖于时空变量及其理由. 【答案】量子态的叠加原理:若仍然为粒子可能处于的态.
叠加系数不依赖于时空变量. 因为量子态的叠加原理已经明确说明了是任意线性组合,即表明了叠加系数不依赖于任何变量.
7. 解释量子力学中的“简并”和“简并度”。
【答案】一个能级对应多个相互独立的能量本征函数的现象称为“简并”;一个能级对应的本征函数的数目称为“简并度”。
8. 将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据
对波函数的统计解释,描写体系量子状态的波函数是概率波,由于
粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。
9. 扼要说明:
(1)束缚定态的主要性质。
(2)单价原子自发能级跃迁过程的选择定则及其理论根据。
【答案】(1)能量有确定值。力学量(不显含f )的可能测值及概率不随时间改变。 (2)选择定则:
理论根据:电矩m 矩阵元
10.厄米算符的本征值与本征矢
分别具有什么性质?
为粒子可能处于的态,那么这些态的任意线性组合
【答案】本征值为实数,本征矢为正交、归一和完备的函数系。
二、证明题
11.证明厄密算符的本征值是实数。量子力学中表示力学量的算符是不是都是厄密算符? 【答案】以表示的本征值
由此得
表示所属的本征函数,则
即是实数。
因为是厄密算符,于是有
12.证明,
【答案】因为
可得:
三、计算题
13.假设一个定域电子(忽略电子轨道运动)在均匀磁场中运动,磁场S 沿轴正向,电子磁矩在均匀磁场
中的势能表示
;
这里
为电子的磁矩。自旋用泡利矩阵
(1)求定域电子在磁场中的哈密顿量,并列出电子满足的薛定谔方程:(2)假设(3)求
时,电子自旋指向x 轴正向,即时,电子自旋指向y 轴负向,即
求
时,自旋的平均值。
的几率是多少?
【答案】(1)忽略电子轨道运动,其中,所以哈密顿为:薛定谔方程为:(2)在
是玻尔磁子。
表象中求解,自旋波函数可表示为:
即:
其中,