当前位置:问答库>考研试题

2017年江西师范大学物理与通信电子学院849量子力学之量子力学教程考研仿真模拟题

  摘要

一、简答题

1. 坐标分量算符与动量分量算符的对易关系是什么?并写出两者满足的测不准关系。 【答案】对易关系为

测不准关系为

2. 解释量子力学中的“简并”和“简并度”。

【答案】一个能级对应多个相互独立的能量本征函数的现象称为“简并”;一个能级对应的本征函数的数目称为“简并度”。

3. 如果算符表示力学量那么当体系处于

的本征态时,问该力学量是否有确定的值?

【答案】是,

其确定值就是在本征态的本征值。

4. 非相对论量子力学的理论体系建立在一些基本假设的基础上,试举出二个以上这样的基本假设,并简述之。

【答案】(1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。

(2)力学量用厄密算符表示。如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表示式中将动量换为算符数。

(3)将体系的状态波函数

用算符的本征函数展开:

则在

盔中测量力学量得到结果为

(4)体系的状态波函数满足薛定谔方程

其中是体系的哈密顿算符。

的几率是

得到结果在

范围内的几率是

得出。表示力学量的算符组成完全系的本征函

(5)在全同粒子所组成的体系中,两全同粒子相互调换不改变体系的状态(全同性原理)。 以上选三个作为答案。

5. 什么是隧道效应,并举例说明。

【答案】粒子的能量小于势垒高度时仍能贯穿势垒的现象称为隧道效应,如金属电子冷发射和衰变现象都是隧道效应产生的。

6. 写出电子自旋的二本征值和对应的本征态。 【答案】

7. 将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据

对波函数的统计解释,描写体系量子状态的波函数是概率波,由于

粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。

8. 完全描述电子运动的旋量波函数为

分别表示什么样的物理意义。

【答案

表示电子自旋向

表示电子自旋向上

9. 波函数

的几率。 是否描述同一状态?

位置

处的几率密度

试述

【答案】

与描写的相对概率分布完全相同,描写的是同一状态。

10.什么是塞曼效应?什么是斯达克效应?

【答案】塞曼效应是原子在外磁场中光谱发生分裂的现象;斯达克效应是原子在外电场作用下光谱发生分裂的现象。

二、证明题

11.(1)对于任意的厄米算符,证明其本征值为实数. (2)证明厄米算符属于不同本征值的本征函数彼此正交. (3)对于角动量算符

证明它是厄米算符,并且求解其本征方程.

因为存在

(2)证:因为而(3)因为

所以

即正交

【答案】(1)证:对于厄米算符

所以

即本征值为实

具有周期性,

所以

设本征方程为

其中为本征值,上式可改写为

易解出即为厄米算符。

C 为积分常数,可由归一化条

件决定. 又因为波函数满足周期性边界条件的限制,

由此可得数记为

即为其本征函数. 相应的本征方程为

12.证明厄密算符的本征值是实数。量子力学中表示力学量的算符是不是都是厄密算符? 【答案】以表示的本征值

由此得

表示所属的本征函数,则

即是实数。

因为是厄密算符,于是有

即角动量z 分量的本征值为

是量子化的,相应本征函

再利用归一化条件可得

三、计算题

13.一自由的三维转子的Hamiltonian

为(1)求能谱与相应的简并度; (2)若给此转子施加以微扰已知:

【答案】(1)显然,哈密顿算符与本征值对应, 故三维转子能谱

(2)转子在基态非简并时,故

其中1为轨道角动量量子数,其简并度为21+1 .

式中,是轨道角动量算符,1是转子的转动惯量。

求基态能级移动(直至二阶微扰).