当前位置:问答库>考研试题

2017年上海工程技术大学城市轨道交通学院821运筹学[专业硕士]考研导师圈点必考题汇编

  摘要

一、选择题

1. 对于动态规划,下列说法正确的有( )

A. 在动态规划模型中,问题的阶段数等于问题中的子问题的数目

B. 动态规划中,定义状态时应保证在各个阶段中所做决策的相互独立性

C. 对一个动态规划问题,应用顺推成逆推解法可能会得出不同的最优解

D. 假如一个线性规划问题含有8个变量和6个约束,则用动态规划方法求解时将划分为6个阶段,每个阶 段的状态将有一个8维的向量组成

【答案】AB

【解析】对于一个动态规划问题,不论是采用顺推法还是逆推法,只能得到一个唯一的解; 假如一个线性规 划问题含有8个变量和6个约束,则用动态规划方法求解时将按照变量的个数划分为8个阶段,每个阶段的状态 将有一个6维的向量组成。

2. 线性规划的最优解有以下几种可能( )。

A. 唯一最优解

B. 多个最优解

C. 没有最优解,因为目标函数无界

D. 没有最优解,因为没有可行解

【答案】ABCD

【解析】线性规划问题的每个基可行解对应可行域的一个顶点,若现行规划问题有最优解,必在某个顶点上 得到,当该顶点唯一时,有唯一最优解; 当目标函数在多个顶点上达到最大值时,则该问题有无限多个最优解; 目标函数无界,称线性规划问题具有无界解,此时无最优解; 使目标函数达到最大的可行解称为最优解,故没有可行解就没有最优解。

3. 动态规划是解决( )的一种数学方法。

A. 单阶段决策过程最优化

B. 多目标决策过程最优化

C. 多阶段决策过程最优化

D. 位目标决策过程最优化

【答案】C

【解析】动态规则是运筹学的一个分支,它是解决多阶段决策过程最优化的一种数学方法

4. 用匈牙利法求解指派问题时,不可以进行的操作是( )。

A. 效益矩阵的每行同时乘以一个常数

B. 效益矩阵的每行同时加上一个常数

C. 效益矩阵的每行同时减去一个常数

D. 效益矩阵乘以一个常数

【答案】D

【解析】效益矩阵乘以一个常数相当于系数矩阵的某行或某列乘以一个常数,这相当于目标函数中的部分系 数乘以一个常数,而目标函数整体乘以一个系数,显然会影响求解结果。

二、填空题

5. 某整数规划模型,解其松弛问题得到最优解。若其中某分量x j 二场为非整数,用分支定界法求解时,针对 该分量构造的两个约束条件应为:_____。 【答案】

【解析】由分支定界法的原理可以,良容易得至“结果,其中〔b j 〕为不大于bj 的最大整数。

6. 网络中如果树的节点个数为z ,则边的个数为_____。

【答案】z-l

【解析】由树的性质可知,树的边数=数的节点数-1

7. 图G=(V ,E )有生成树的充分必要条件是_____。

【答案】G 是连通图

【解析】图G 是连通图,如果G 不含圈,那么G 本身是一个树,从而G 使它自身的一个支撑树。现设G 含圈,任取一个圈,从圈中任意地去掉一条边,得到G 的一个支撑子图Gl 。如果Gl 不含圈,那么Gl 是G 的 一个支撑树,如果Gl 仍含圈,那么从Gl 中再任取一个圈,如此重复,最终可以得到G 的一个支撑子图Gk , 它不含圈,于是Gk 就是G 的一个支撑树。

8. 运输问题任一基可行解非零分量的个数的条件是_____。

【答案】小于等于行数+列数-1

【解析】任意运输问题的基可行解可变量个数为:行数+列数一l 。然而基变量也可能等于0,所以运输问题 任一基可行解非零分量的个数小于等于行数+列数一1。

三、证明题

9. 证明:矩阵对策

的鞍点不存在的充要条件是有一条对角线的每一个元素均大于另一对角线上的每一个元素。

【答案】(l )先证充分性,要使鞍点存在,就必存在有 ① 使对一切,可假设主对角线的每一个元素均大于次对角的每一个元素,即

则充分性得证。

(2)证必要性。假设“有一条对角线的每一个元素均大于另一条对角线上的每一个元素”这种情形不存在,则可设

又可假设

其他情形同理可类推得出存在鞍点,由命题与逆否命题等价可知必要性成立.

10.对于M/M/1/N/∞模型,试证,并对上式给予直观的解释。

【答案】若令,

则有