2018年北京工商大学理学院716量子力学考研核心题库
● 摘要
一、简答题
1. 简述波函数的统计解释。
【答案】波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。
2. 将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据
对波函数的统计解释,描写体系量子状态的波函数是概率波,由于
粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。
二、计算题
3. 假设一个定域电子(忽略电子轨道运动)在均匀磁场中运动,磁场B 沿z 轴正向,电子磁矩在均匀磁场中的势能:
表示;
(1)求定域电子在磁场中的哈密顿量,并列出电子满足的薛定谔方程:电子轨道运动,
此时T=0。
求t >0时,自旋的平均值。提示:
提示:忽略
这里
为电子的磁矩;
自旋用泡利矩阵
(2)假设t=0时,电子自旋指向x 轴正向,即
(3)求t >0时,电子自旋指向y 轴负向,即【答案】(1)忽略电子轨道运动,是玻尔磁子。所以哈密顿为:
的几率是多少?
其中,
薛定谔方程为:
(2)在
表象中求解,自旋波函数可表示为:
即:
式中,
满足
即
设t= 0时,电子的自旋指向x 轴正向,
对应波函数为
并满足归一关系:可得:
即,可得:
时刻t ,自旋的平均值:
所以:
(3)假设t 时刻,
的几率为P ,则
的几率为
所以:
其中,为自的解为:
4. 设在平行于y 轴的磁场中,一个电子的哈密顿为旋算符,在t=0时刻,电子处在【答案】粒子的哈密顿量
本征值为
因此定态方程
的本征态,求以后t 时刻电子所处状态的表示式。
t 时刻,电子波函数满足:
因为
故:
所以:
5. —个自旋为1/2的粒子在三维各向同性的谐振子势中运动,求其基态和第一激发态的能量、波函数和相 应简并度。已知质量为的无自旋粒子在一维谐振子势(频率为)中运动的波函数为基态
第一激发态
【答案】三维各向同性的谐振子可作分离变量求解,分别为三个方向的一维谐振子运动的并合。 基态为三个方向都在基态,加上自旋自由度可得波函数为:
其中,于是可知能量为
为自旋波函数。 简并度等于
第一激发态为有一个方向处于第一激发态,故波函数为:
相关内容
相关标签