2017年西安电子科技大学数学与统计学院432统计学[专业硕士]之统计学考研冲刺密押题
● 摘要
一、简答题
1. 多元线性回归模型中有哪些基本的假定?
【答案】多元回归模型的基本假定有:
(1)自变量
(3)对于自变
量
(4)误差项是一个服从正态分布的随机变量,且相互独立,即
2. 何谓统计分组?统计分组有哪些作用?
【答案】根据统计研宄的目的和客观现象的内在特点,按某个标志(或几个标志)把被研宄的总体划分为若干个不同性质的组,称为统计分组。
统计分组的作用有:(1)发现社会经济现象的特点与规律;(2)将复杂的社会经济现象划分为性质不同的各种类型;(3)反映总体内部结构;(4)揭示现象之间的依存关系。
3. 在研宄方法上,参数估计与假设检验有什么相同点和不同点?
【答案】(1)参数估计和假设检验的相同点
①是根据样本信息推断总体参数;
②都以抽样分布为理论依据,建立在概率论基础之上的推断,推断结果都有风险;
③对同一问题的参数进行推断,使用同一样本、同一统计量、同一分布,因而二者可以相互转换。
(2)参数估计和假设检验的不同点
①参数估计是以样本资料估计总体参数的可能范围,假设检验是以样本资料检验对总体参数的先验假设是否成立;
②区间估计求得的是以样本估计值为中心的双侧置信区间,假设检验既有双侧检验,也有单侧检验;
③区间估计立足于大概率,通常以较大的把握程度(可信度)
; 是非随机的、固定的,且相互之间互不相关(无多重共线性) 的方
差都相同,且不序列相关,
即 的所有
值(2)误差项是一个期望值为0的随机变量,即去估计总体参数的置信区
间;假设检验立足于小概率,
通常是给定很小的显著性水平去检验对总体参数的先验假设是否成立。
4. 二项分布与超几何分布的适用场合有什么不同?它们的均值和方差有什么区别?
【答案】(1)从理论上讲,二项分布只适合于重复抽样(即从总体中抽出一个个体观察完后放回总体,然后再抽下一个个体)。但在实际抽样中,很少采用重复抽样。不过,当总体的元素数目况很大而样本量, 相对于AT 来说很小时,二项分布仍然适用。
但如果是采用不重复抽样,各次试验并不独立,成功的概率也互不相等,而且总体元素的数目很小或样本量 «相对于W 来说较大时,二项分布就不再适用,这时,样本中“成功”的次数则服从超几何概率分布。
(2)若X 服从二项分布若Y 服从超几何分布
5. 试述统计总体及其特征。
【答案】总体是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成,如由多个企业构成的 集合,多个居民户构成的集合,多个人构成的集合,等等。总体根据其所包含的单位数目是否可数可以分为有限总体和无限总体。有限总体是指总体的范围能够明确确定,而且元素的数目是有限可数的。通常情况下,统计上 的总体是一组观测数据,而不是一群人或一些物品的集合。
总体具有的特征包括:(1)同质性,即总体单位都必须具有某一共同的品质标志属性或数量标志数值,它是 构成总体的条件;(2)大量性,即构成总体的总体单位数目要足够多;(3)差异性,即总体单位必须具有一个或 若干个品质变异标志或数量变异标志。
6. 在显著性检验过程中,经常遇到值这一概念,试回答以下问题:
(1)值能告诉我们什么信息?
(2)当相应的值较小时为什么要拒绝原假设?
(3)显著性水平与值有何区别?
【答案】如果原假设为真,所得到的样本结果会像实际观测结果那么极端或更极端的概率,称为值,也称为观察到的显著性水平。
(1)值是当原假设正确时,得到所观测的数据的概率。如果原假设是正确的话,值告诉我们这样的观测数据会有多么的不可能得到。相当不可能得到的数据,就是原假设不对的合理证据。
(2)值是反映实际观测到的数据与原假设明实际观测到的数据与之间不一致程度的一个概率值。值越小,说之间不一致的程度就越大,检验的结果也就越显著。 则则
(3)是犯第I 类错误的上限控制值,它只能提供检验结论可靠性的一个大致范围,而对于一个特定的假设检验问题,却无法给出观测数据与原假设之间不一致程度的精确度量。也就是说,
仅从显著性水平来比较,
如果选择的值相同,
所有检验结论的可靠性都一样。而值可以测量出样本观测数据与原假设中假设的值的偏离程度。
7. 如果有百分之五的人是左撇子,而小明和他弟弟都是左撇子;那么小明和他弟弟都是左撇子这个事件的 概率是不是0. 05X0. 05=0. 00257?为什么?
【答案】不是。
显然,小明和他弟弟都是左撇子的事件不是独立的,所以这种计算方法错误。
当两个事件相互独立时,
当两个事件不相互独立时
,⑴ ⑵
记事件A 为小明是左撇子,事件B 为小明的弟弟是左撇子。显然小明是左撇子和他弟弟是左
撇子这两个事件不相互独立,所以选择第二个公式计算小明和他弟弟都是左撇子这个事件的概率。
8. 什么是指数?它有哪些性质?
【答案】指数,或称统计指数,是分析社会经济现象数量变化的一种重要统计方法。它有如下一些性质:
(1)相对性。指数是总体各变量在不同场合下对比形成的相对数,它可以度量一个变量在不同时间或不同空间的相对变化,如一种商品的价格指数或数量指数。它也可以反映一组变量的综合变动,比如综合物价指数是根据一组商品价格的相对变化并给每种商品的相对数定以不同权数计算出来的,这种指数称为综合指数。另外根据对比两变量所处的是不同时间还是不同空间,它们计算出来的指数分时间性指数和区域性指数。
(2)综合性。综合性说明指数是一种特殊的相对数,它是由一组变量或项目综合对比形成的。比如,由若干种商品和服务构成的一组消费项目,通过综合后计算价格指数,以反映消费价格的综合变动水平。
(3)平均性。平均性含义有二:一是指数进行比较的综合数量是作为个别量的一个代表,这本身就具有平均的性质;二是两个综合量对比形成的指数反映了个别量的平均变动水平,比如物价指数反映了多种商品和服务项目价格的平均变动水平。
二、计算题
9. 工业企业某种产品产量与单位成本资料如表所示:
表
要求:
(1)根据上表资料,绘制相关图,判别该数列相关与回归的种类;
(2)配合适当的回归方程;
相关内容
相关标签