2017年西安电子科技大学数学与统计学院432统计学[专业硕士]之统计学考研强化模拟题
● 摘要
一、简答题
1. 中心极限定理。
【答案】设随机变量
令
则
也就是说,当n 趋于无穷大时,的分布趋向于标准正态分布 相互独立(S 卩,对任意给定的相互独立)且服从同一分布,该分布存在有限的期望和方
差
2. 考虑总体参数的估计量,简述无偏估计量与最小方差无偏估计量的定义。
【答案】①无偏性(unbiasedness )是指估计量抽样分布的数学期望等于被估计的总体参数。设总体参数为所选择的估计量为如果则称为的无偏估计量。对于待估参数,不同的样本值就会得到不同的估计值。这样,要确定一个估计量的好坏,就不能仅仅依据某次抽样的结果来衡量,而必须由大量抽样的结果来 衡量。对此,一个自然而基本的衡量标准是要求估计量无系统偏差。尽管在一次抽样中得到的估计值不一定恰好 等于待估参数的真值,但在大量重复抽样时,所得到的估计值平均起来应与待估参数的真值相同,即希望估计量 的均值应等于未知参数的真值,这就是无偏性的要求。 ②最小方差无偏估计是在无偏估计类中使均方误差达到最小的估计量,即在均方误差
是的一个无偏估计量,都有
则称是的一致最小方差无偏估计。
3. 给出显著性检验中,P 值的含义,以及如何利用P 值决定是否拒绝原假设。
【答案】P 值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P 值很小,说明这种情况发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设。P 值越小,我们拒绝原假设的 理由就越充分。
从研宄总体中抽取一个随机样本,计算检验统计量的值和概率P 值,即在假设为真的前提下,
第 2 页,共 51 页 最小意义下的最优估计,它是在应用中人们希望寻求的一种估计量。设若对于的任一方差存在的无偏估计量
检验统计量大于或等于实际观测值的概率。如果
数取值;如果
即一般以为显著
,结果更倾向于接受假定的参数取值。
说明是较强的判定结果,拒绝假定的参说明说明是较弱的判定结果,拒绝假定的参数取值;如果为非常显著,其含义是样本间的差异由抽样误差所致的概率
时小于0.05或0.01。但是,P 值不能赋予数据任何重要性,只能说明某事件发生的机率。
样本间的差异比时更大,这种说法是错误的。
4. 简述非抽样误差类型。
【答案】非抽样误差是相对抽样误差而言的,是指除抽样误差之外的,由于其他原因引起的样本观察结果与总体 真值之间的差异。无论是概率抽样、非概率抽样,或是在全面调查中,都有可能产生非抽样误差。非抽样误差有以下几种类型:
(1)抽样框误差,是指抽样框中的单位与研宄总体的单位不存在一一对应的关系,使用这样的抽样框抽取样本就会出现一些错误。
(2)回答误差,是指被调查者在接受调查时给出的回答与真实情况不符。导致回答误差的原因有多种,主要有理答误差、记忆误差和有意识误差。
(3)无回答误差,是指被调查者拒绝接受调查,调查人员得到的是一份空白的答卷。
(4)调查员误差,是指由于调查员的原因而产生的调查误差。
(5)测量误差,是指如果调查与测量工具有关,则很可能产生测量误差。
5. 构建综合评价指数时需要考虑哪些方面的问题?
【答案】构建综合评价指数需要考虑如下几个方面的问题:
(1)进行理论研宄,其中包括统计指标理论以及统计指标体系的理论研宄,以便为确定所需的评价指标提供一定的理论依据。
(2)建立科学的评价指标体系。所建立的指标体系是否科学与合理,直接关系到评价结果的科学性和准确性。建立指标体系,首先应进行必要的定性研宄,对所研宄的问题进行深入的分析,尽量选择那些具有一定综合意义的代表性指标;其次,应尽可能运用多元统计的方法进行指标的筛选,以提高指标的客观性。
(3)评价方法研宄,主要包括综合评价指数的构造方法、指标的赋权方法以及各种评价方法的比较等。
6. 简述均值、众数和中位数三者之间的关系及其在实际中的应用。
【答案】(1)众数、中位数和平均数的关系
从分布的角度看,众数始终是一组数据分布的最高峰值,中位数是处于一组数据中间位置上的值,而平均数 则是全部数据的算术平均。
对于具有单峰分布的大多数数据而言,众数、中位数和平均数之间具有以下关系:
①如果数据的分布是对称的,众数中位数第 3 页,共 51 页 和平均数必定相等,即
②如果数据是左偏分布,说明数据存在极小值,必然拉动平均数向极小值一方靠,而众数和中位数由于是位 置代表值,不受极值的影响,因此三者之间的关系表现为:
③如果数据是右偏分布,说明数据存在极大值,必然拉动平均数向极大值一方靠,
则
(2)众数、中位数和平均数在实际中的应用
①众数是一组数据分布的峰值,不受极端值的影响。其缺点是具有不唯一性,一组数据可能有一个众数,也可能有两个或多个众数,也可能没有众数。众数只有在数据量较多时才有意义,当数据量较少时,不宜使用众数。 众数主要适合作为分类数据的集中趋势测度值。
②中位数是一组数据中间位置上的代表值,不受数据极端值的影响。中位数主要适合作为顺序数据的集中趋势测度值。
③平均数是对数值型数据计算的,而且利用了全部数据信息,它是实际中应用最广泛的集中趋势测度值。当数据呈对称分布或接近对称分布时,3个代表值相等或接近相等,这时则应选择平均数作为集中趋势的代表值。 但平均数的主要缺点是易受数据极端值的影响,对于偏态分布的数据,平均数的代表性较差。因此,当数据为偏态分布,特别是当偏斜程度较大时,可以考虑选择众数或中位数。
7. 简述描述离散程度的统计量和适用类型。
【答案】衡量数据离散程度的统计量主要有极差、平均差、方差和标准差,其中最常用的是方差和标准差。
(1)极差是指一组数据的最大值与最小值之差。用R 表示,其计算公式为:
极差是描述数据离散程度的最简单测度值,计算简单,易于理答,但它容易受极端值的影响。由于极差只是利用了一组数据两端的信息,不能反映出中间数据的分散状况,因而不能准确描述出数据的分散程度。
(2)平均差也称平均绝对离差,它是各变量值与其平均数离差绝对值的平均数。平均差以平均数为中心,反映了每个数据与平均数的平均差异程度,它能全面准确地反映一组数据的离散状况。平均差越大,说明数据的离散程度越大;反之说明数据的离散程度小。为了避免离差之和等于零而无法计算平均差这一问题,平均差在计算时对离差取了绝对值,以离差的绝对值来表示总离差,这就给计算带来了不便,因而在实际中应用较少。但平均差的实际意义比较清楚,容易理答。
(3)方差是各变量值与其平均数离差平方的平均数。它在数学处理上是通过平方的办法消去离差的正负号, 然后再进行平均,方差开方后即得到标准差,方差或标准差能较好地反映出数据的离散程度,是实际中应用最广泛的离散程度测度值。与方差不同的是,标准差是具有量纲的,它与变量值的计量单位相同,其实际意义要比方差清楚。因此,在对实际问题进行分析时更多地使用标准差。
第 4 页,共 51 页
相关内容
相关标签