2017年西安电子科技大学数学与统计学院432统计学[专业硕士]之统计学考研仿真模拟题
● 摘要
一、简答题
1. 方差分析中的基本假定。
【答案】方差分析中有三个基本假定:(1)每个总体都应服从正态分布。也就是说,对于因素的每一个水平,其观测值是来自正态分布总体的简单随机样本;(2)各个总体的方差
的。
2. 举例说明什么是列联表的独立性检验。
【答案】变量分为定量变量和定性变量。对于定量变量我们用回归分析等方法机进行研宄。对于定性变量,如吸烟是否与患癌症有关、性别与是否喜欢数学有关、年龄和喜欢的电视节目类型是否有关等等,我们对其进行列联 表的独立性检验。列联表的独立性检验是对一个分类变量的检验,因其分析过程可以通过列联表的方式呈现,故又可称为列联分析。
独立性检验就是分析列联表中行变量和列变量是否相互独立。
例如:为了研究年龄和喜欢的节目类型是否有关系,某单位对闲暇时间进行了全面调查,根据不同年龄档和喜爱收看电视节目的类型进行了如下的统计分类:
按照假设检验的步骤
:必须相同。也就是说,对于各组观察数据,是从具有相同方差的正态总体中抽取的;(3)观测值是独立
按照假设检验的步骤:
设定假设:
(行变量与列变量独立)
(行变量与列变量不独立) (其中是行变量,是列变量)
选取统计量:
(其中,
第i 行第j 列类别的期望频数;并且为列联表中第i 行第j 列类别的实际频数; 为列联表中
最后带入数字,进行判断。看是否有行向量与列向量独立。若拒绝原假设,即行向量与列向量不独立,即年龄和喜欢的节目类型有关系。反之,年龄和喜欢的节目类型无关。
3. 何谓统计量?分布、t 分布、F 分布是不是统计量?它们在统计分析中各有何用处?
【答案】设
函数
又称出是从总体X 中抽取的容量为n 的一个样本,如果由此样本构造一个不依赖于任何未知参数,则称函数为样本统计量。当获得样本的一组具体观测值的数值,就获得一个具体的统计量值。
从以上统计量的定义可以看出,当.
赖于任何未知参数时,则.
未知参数,则它们就不是统计量。
分布:分布可以用来构造f 分布与F 分布,并且在假设检验与列联分析中做检验统计量。
t 分布:一般当时,f 分布与标准正态分布就非常接近。分布的诞生对于统计学中小样本理论和应用有着重要的促进作用。f 分布在假设检验与线性回归显著性检验中做检验统计量。
F 分布:在比较两个总体方差的假设检验时通常用F 分布,且F 分布在线性回归显著性检验与方差分析中做很重要的检验统计量。
4. 多元回归分析中为什么需要使用修正的判定系数(可决系数)来比较方程的拟合效果?是如何计算的?
【答案】在多元线性回归分析中,常用修正的判定系数,而不用多重判定系数来衡量估计模
型对样本观测值的拟合优度。这是由于多重判定系数
随着样本解释变量个数的增加
来越高(即的值越
是解释变量个数的增函数)。也就是说,在样本容量不变的情况,在模型中增加新
不是一个合适的指标,需加以分布、t 分布、F 分布是由样本构造的函数,而且不依分布、t 分布、F 分布中含有分布、t 分布、F 分布就是统计量;若是一个统计量。通常,时,代入T ,计算的解释变量不会改变总离差平方和,但可能增加回归平方和,减少残差平方和,从而可能改变模型的解释功能。因此在多元线性回归模型之间比较拟和优度时,
调整。而修正判定系数
归模型方面要优于多重判定系数修正判定系数的计算公式为
5. 试述统计总体及其特征。
【答案】总体是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成,如由多个企业构成的 集合,多个居民户构成的集合,多个人构成的集合,等等。总体根据其所包含的单位数目是否可数可以分为有限总体和无限总体。有限总体是指总体的范围能够明确确定,而且元素的数目是有限可数的。通常情况下,统计上 的总体是一组观测数据,而不是一群人或一
其值不会随着解释变量个数k 的増加而增加,因此在用于估计多元回
些物品的集合。
总体具有的特征包括:(1)同质性,即总体单位都必须具有某一共同的品质标志属性或数量标志数值,它是 构成总体的条件;(2)大量性,即构成总体的总体单位数目要足够多;(3)差异性,即总体单位必须具有一个或 若干个品质变异标志或数量变异标志。
6. 在假设检验中,犯两类错误之间存在什么样的数理关系?是否有什么办法使得两类错误同时减少?
【答案】第一类错误是指原假设为真,拒绝原假设,又称弃真错误,犯这类错误的概率记为第二类错误是指原假设为假,接受原假设,又称取伪错误,犯这类错误的概率记为
由于两类错误是矛盾的,在其他条件不变的情况下,减少犯弃真错误的可能性
犯取伪错误的可能性 势必增大也就是说
,
的大小和显著性水平的大小成相反方向变化。解决的唯一办法只有增大样本容量,这样既能保证满足取得较小的又能取得较小的值。
7. 欲调查广州市初中学生的身高情况,随机抽取100名广州市初中学生,测量了身高。
(1)用此例说明这几个统计概念,总体(population ), 样本(sample ), 参数(pammeter ), 统计量(statistics )。
(2)请说明如何对这100例身高数据进行描述性统计分析。
【答案】(1)总体(population )是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成。 本例中的总体是广州市所有初中学生。
样本(sample )是从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量(sample size)。 本例中的样本是随机抽取的100名广州市初中学生,其中样本量为100。
参数(parameter )是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。本 例中广州市所有初中学生的平均身高即是一个参数。
统计量(statistic )是用来描述样本特征的概括性数字度量。它是根据样本数据计算出来的一个量,由于 抽样是随机的,因此统计量是样本的函数。随机抽取的100名广州市初中学生的平均身高即是一个统计量。
(2)所谓描述性统计分析,就是对一组数据的各种特征进行分析,以便于描述测量样本的各种特征及其所 代表的总体的特征。主要包括集中趋势的描述,可计算身高的均值,中位数和众数,也可采用箱线图直观的反映 数据的集中趋势以及是否存在异常值;离散程度的描述,可计算身高的方差,变异系数,四分位差或极差,也可 采用折线图或散点图等直观反映数据的离散程度;分布的偏态与峰度描述,可计算偏度和峰度值,或采用茎叶图 或直方图直观的反映分布是否与正态分布或单峰偏态分布逼近。
8. 在研宄方法上,参数估计与假设检验有什么相同点和不同点?
【答案】(1)参数估计和假设检验的相同点
①是根据样本信息推断总体参数;
相关内容
相关标签