当前位置:问答库>考研试题

2018年烟台大学生命科学学院314数学(农)之概率论与数理统计考研基础五套测试题

  摘要

一、计算题

1. —个人把六根草紧握在手中,仅露出它们的头和尾,然后随机地把六个头两两相接,六个尾也两两相接,求放开手后六根草恰巧连成一个环的概率.

【答案】因为“六个尾两两相接”不会影响是否成环,所以只需考虑“六个头两两相接”可能出现的情况,若考虑头两两相接的前后次序,则“六个头两两相接”共有

种不同结果,即先

从6个头中任取1个,与余下的5个头中的任1个相接;然后从未接的4个头中任取1个,与余下的3个头中的任1个相接;最后从未接的2个头中任取1个,与余下的最后1个头相接,这总共有6! 种可能接法,这是分母,而要成环则第一步从6个头中任取1个,此时余下的5个头中有1个不能相接,只可与余下的4个头中的任1个相接;第二步从未接的4个头中任取1个,与余下的2个头中的任1个相接;最后从未接的2个头中任取1个,与余下的最后1个头相接,这总共有6×4×4×2×2×1种可能接法,由此得所求概率为

2. 设二维随机变量(x , y )的联合密度函数为少有一个小于0.5的概率

【答案】两事件

中至少有一个发生的概率为

3. 掷两颗骰子,以A 记事件“两颗点数之和为10”,以B 记事件“第一颗点数小于第二颗点数”,试求条件概率

.

【答案】掷两颗骰子的样本空间为

求X 与Y 中至

因为

所以

于是所求概率为

,由此得

4. 设某班车起点站上客人数X

服从参数

的泊松分布,

每位乘客在中途下车的概率为

, 且中途下车与否相互独立, 以Y 表示在中途下车的人数, 求:

(1)在发车时有n 个乘客的条件下, 中途有m 人下车的概率; (2)二维随机变量

的概率分布.

【答案】 (1)求在发车时有n 个乘客的条件下, 中途有m 人下车的概率,

相当于求条件概率

.

将每位乘客在中途下车看成是一次试验, 且每个人下车是独立的, 有n 个人相当于做了n 次独立重复试验. 若将乘客下车视为试验成功, 不下车视为试验失败, 而且每次试验成功的概率都为P , 则问题(1)转化为n 重伯努利试验中m 次成功的概率. 因此条件概率服从二项分布, 即

(2)求二维随机变量因为X 服从参数故其中

5. 设随机变量

.

的联合密度函数为

试求【答案】

6. 下表是经过整理后得到的分组样本:

试写出此分组样本的经验分布函数. 【答案】样本的经验分布函数为

的概率分布, 其实就是求

的泊松分布, 则

,

, 利用乘法公式, 有

7. 设随机变量

服从柯西分布,其密度函数为

试证:

时,有

【答案】对任意的

即结论得证.

8. 设A ,B 是两事件,且P (A )=0.6,P (B )=0.8, 问:

(1)在什么条件下P (AB )取到最大值,最大值是多少? (2)在什么条件下P (AB )取得最小值,最小值是多少? 【答案】(1)因为时,P (AB )的最大值是0.6.

(2)因

. 而当

时,有P (AB )达到最小值0.4.

所以

所以当

二、证明题

9. 证明:对正态分布

,若只有一个观测值,则的最大似然估计不存在.

【答案】在只有一个观测值场合,对数似然函数为

该函数在似然估计不存在. 10.设和方差,

(2)当

【答案】 (1)由由于X 的概率密度为

时趋于,这说明该函数没有最大值,或者说极大值无法实现,从而的最大

是来自总体x 的简单随机样本,

, 证明:

相互独立知,

也相互独立,

所以

时,

分别为样本的均值

(1)当X 服从数学期望为0的指数分布时,