当前位置:问答库>考研试题

2018年厦门大学材料科学与工程系820量子力学考研仿真模拟五套题

  摘要

一、简答题

1. 什么是定态?若系统的波函数的形式为处于定态?

【答案】体系能量有确定的不随时间变化的状态叫定态,定态的概率密度和概率流密度均不随时间变化. 不是,体系能量有E 和-E 两个值,体系能量满足一定概率分布而并非确定值.

2. 归一化波函数是否可以含有任意相因子 【答案】可以。因为即用任意相因子归一化。

3. 电子在位置和自旋表象下,波函数【答案】

利用

的几率密度;

表示粒子在

如何归一化?解释各项的几率意义。

进行归一化,其中

的几率密度。

表示粒子在

|

如果

对整个空间积分等于1,则

对整个空间积分也等于1。

去乘以波函数,既不影响体系的量子状态,也不影响波函数的

是否

4. 什么是费米子? 什么是玻色子? 两者各自服从什么样的统计分布规律?

【答案】费米子是自旋为半奇数的粒子,玻色子是自旋为整数的粒子. 费米子遵守费米-狄拉克统计规律,玻色子遵从玻色-爱因斯坦统计规律.

5. 现有三种能级【答案】

请分别指出他们对应的是哪些系统。

对应一维无限深势阱;

对应

对应中心库仑势系统,例如氢原子;

一维谐振子.

6. 反常塞曼效应的特点,引起的原因。 【答案】原因如下:

(1)碱金属原子能级偶数分裂; (2)光谱线偶数条;

(3)分裂能级间距与能级有关; (4)由于电子具有自旋。

7. 什么是隧道效应,并举例说明。

【答案】粒子的能量小于势垒高度时仍能贯穿势垒的现象称为隧道效应,如金属电子冷发射和衰变现象都是隧道效应产生的。

8. 有人说“在只考虑库仑势场情况下,氢原子原有本征态都存在实的轨道波函数”,你是否同意这种说法, 简述理由。

【答案】不同意。因为为实函数,但可以为复函数。

9. 如果一组算符有共同的本征函数,且这些共同的本征函数组成完全系,问这组算符中的任何一个是否和其余的算符对易? 【答案】不妨设这组算符为

.

则对任意波函数

完全系为有:

可见,这组算符中的任何一个均和其余的算符对易。

10.自旋可以在坐标表象中表示吗?

【答案】自旋是内禀角动量,与空间运动无关,故不能在坐标空间表示出来。

依题意

二、计算题

11.设已知在,值为

的共同表象中,算符

的矩阵分别为

试在取

的本征态下求的可能取值和相应的概率及的平均值.

的本征态矢为

则由

【答案】可能取得的值有可以解得同理由

12.一粒子在力学量的三个本征函数

可以解得

概率为

时态矢为

概率为

态矢

平均值为

所张成的三维子空间中运动,其

能量算符

和另一力学量算符的形式如(1)求的本征值和相应的归一化本征矢(用(2)证明的平均值不随时间变化.

其中a , b为实数。 表示):

【答案】(1)由

令可得

由久期方程可得:解得能量算符的三个本征值

将式中各个值代入式中可以得到

其中k 为

的平均值,而

其中由

13.设基态氢原子处于弱电场中,微扰哈密顿量为(1)求很长时间后已知,基态

电子跃迁到激发态的概率.

(2)基态电子跃迁到下列哪个激发态的概率等于零? 简述理由

.

为3行的任意列矩阵,则式和

式可知

即的平均值不随时间变化.

其中 T 为常数。

已知,a 基态其中为玻耳半径.