当前位置:问答库>考研试题

2018年深圳大学师范学院946教育心理学综合[专业硕士]之现代心理与教育统计学考研核心题库

  摘要

一、概念题

1. 非参数检验

【答案】非参数检验指对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验。常见的非参数检验有符号检验、秩和检验、中数检验等。其优点:(1)不需要对被检验的总体作出关于正态性或其他特定分布的假定;(2)容易理解、容易操作、应用范围广。缺点是功效较低,因为它常会丢失数据中的信息。经常属于大样本检验。

2. 随机原则

【答案】随机原则指在进行抽样时,总体中每一个个体是否被抽取,并不由研究者主观决定,而是每一个体按照概率原理被抽取的可能性是相等的。由于随机抽样使每个个体有同等机会被抽取,因而有相当大的可能性使样本保持和总体有相同的结构,或者说,具有最大的可能使总体的某些特征在样本中得以表现。这时可以说随机样本可以保证样本代表总体。

3. 频率

【答案】频率(frequency )①亦称“相对频数”。某随机事件A , 在N 次试验中出现的次数n 与试验总次数N 的比值。亦称事件A 发生的频率。记为其值介于0〜1之间。事件的频率越大,说明它出现的可能性越大;反之则越小。一个事件的频率不是一个固定的数值,与总次数N 有关,且即使再重复N 次试验,次数n 也可能不同。但在大量重复试验中频率具有稳定性,即当试验次数N 无限增大时,频率F 会在某个固定值上下波动,而且偏差越来越小。②简谐振动基本物理量。物体每秒振动的次数。单位是赫兹(Hz )。在数学关系上频率是物体振动周期的倒数。

4. 假设检验

【答案】在统计学中,通过样本统计量得出的差异作出一般性结论,判断总体参数之间是否存在差异,这种推论过程称假设检验。假设检验是推论统计中最重要的内容,它的基本任务就是事先对总体参数或总体分布形态做出一个假设,然后利用样本信息来判断原假设是否合理,从而决定是否接受原假设。检验的推理逻辑是一定概率保证下的反证法。一般包括四个步骤:(1)根

据问题要求提出原假设 (2)寻找检验统计量,用于提取样本中的用于推断的信息,要求在Ho 成立的条件下,统计量的分布已知且不包含任何未知参数;(3)由统计量的分布,计算“概率值”或确定拒绝域与接受域;(4)由具体样本值计算统计量的观测值,对统计假设作出判断。

若Ho 的内容涉及到总体参数,称为参数假设检验,否则为非参数检验。

二、简答题

5. 简述条形图与直方图的区别。

【答案】条形图与直方图的区别:

①描述的数据类型不同。条形图用来描述称名型数据或计数数据,而直方图主要用来描述分组的连续性数据;

②表示数据多少的方式不同。条形图用直条的长短或高低表示数据的多少和大小,而直方图用面积表示数据的多少和大小。直方图的总面积与总次数相等;

③坐标轴上的标尺分点意义不同。条形图的一个坐标轴是分类轴,而直方图的一个坐标轴上表示的是另一个刻度值;

④图形直观形状不同。条形图之间有间隔,直条与直条之间的间隔大小没有任何关系,不表示任何意义。直方图各个直方块之间紧密相接,没有间隙,当在某一数据上面分布的人数极少或没有,会出现断点。因此,在使用过程中,要注意二者之间的区别。

6. 为什么要做区间估计?怎样对平均数作区间估计?

【答案】(1)做区间估计是因为

①当用点估计来对总体参数进行估计时,总是以误差的存在为前提,但又不能提供正确估计的概率。

这是由于点估计是用估计量的一个具体的数值作为待估参数的估计值,由于估计量是一个随机变量,所以点估计以随机变量中的某一个值来做估计,很显然会产生一定的误差。若误差较小,这个点估计值还是一个好的估计值,若误差较大,这个点估计便失去了意义。

②区间估计在一定意义上弥补了点估计的不足之处。

区间估计是根据估计量以一定可靠程度推断总体参数所在的区间范围,它是用数轴上的一段距离表示未知参数可能落入的范围,它虽不具体指出总体参数等于什么,但能指出未知总体参数落入某一区间的概率有多大。区间估计在点估计的基础上,不仅给出一个估计的范围,使总体参数包含在这个范围之内,而且还能给出估计精度并说明估计结果的有把握的程度。

(2)对平均数进行区间估计的步骤如下

①根据实得样本的数据,计算样本的平均数与标准差。 ②计算标准误

有两种情况:

a. 当总体方差

b. 当总体方差未知时,

用样本的无偏估计量即方差 已知时,

计算,如果计算的是

样本的有偏估计方差则

③确定置信水平或显著性水平。

④根据样本平均数的抽样分布,确定查何种统计表。

确定a=0.05或0.01的横坐标值。一般当总体方差已知时,查正态表;当样本方差未知时,查t 值表(当

时,也可查正态表作近似计算)。确定⑤计算置信区间。

a. 如果查正态分布表,置信区间可写作:

b. 如果查t 值表,置信区间则:

⑥解释总体平均数的置信区间。

7. 面对同一批数据,非参数方法和参数方法都适用,请问你会选择哪种方法?为什么?

【答案】如果同一批数据,非参数方法和参数方法都适用,则会选择参数检验方法。这是因为:

(1)非参数统计检验的模型对抽出研究样本的总体的参数不规定条件。大多数非参数检验都包含一定的假设,其观测是独立的,所研究的变量具有基础的连续性。不过这些假设比起参数检验的假设来说要少得多。而且,非参数检验并不要求如参数检验所要求的那么高的测量,大多数非参数检验是用于顺序量表的数据,也有一些用于名称量表的数据。

(2)如果参数统计模型的所有假设在数据中事实上都能满足,而且测量达到了所要求的水平,那么用非参数统计检验就浪费了数据。浪费的程度用非参数检验的功效功率来表示比如,若一种非参数统计检验的功效效率为90%,这就意味着,当参数检验的所有条件都满足时,其样本容量比非参数方法小10%的适当的参数检验就正好与该非参数分析一样有效。

(3)还没有一种非参数统计方法能用来检验方差分析模型中的交互作用。

对于符合参数检验的资料,非参数检验的检验效能很低。所以某些资料既可以用参数方法也可以用非参数方法时,应使用参数方法。

8. 应用算术平均数表示集中趋势要注意什么问题?

【答案】在应用算术平均数表示几种趋势时,要注意:①算术平均数易受两极端数值(极大或极小)的影响。②一组数据中某个数值的大小不够确切时就无法计算其算术平均数。如果不处理好这两个问题,那么算术平均数将无法表示集中趋势。

三、计算题