当前位置:问答库>考研试题

2018年北京师范大学物理学系959量子力学考研基础五套测试题

  摘要

一、证明题

1. (1)对于任意的厄米算符,证明其本征值为实数. (2)证明厄米算符属于不同本征值的本征函数彼此正交. (3)对于角动量算符

证明它是厄米算符,并且求解其本征方程.

因为存在

(2)证:因为而(3)因为

所以

即正交

所以

设本征方程为

其中为本征值,上式可改写为

易解出

C 为积分常数,可由归一化条

即为厄米算符。

具有周期性,

所以

即本征值为实

【答案】(1)证:对于厄米算符

件决定. 又因为波函数满足周期性边界条件的限制,

由此可得数记为

即为其本征函数. 相应的本征方程为

即角动量z 分量的本征值为

是量子化的,相应本征函

再利用归一化条件可得

2. —粒子处于势场V (x )中,且势V (x )没有奇点. 假设相应的本征能量色【答案】由题意

试证明这两个波函数对应的态矢正交.

是束缚态的波函数,

并在方程两边同时积分

则由正交归一化条件有

考虑到哈密顿算符的厄米算符性质并利用式Ⅱ有设粒子本征波函数完备集为

态矢为态矢为

Ⅳ、Ⅴ代入Ⅲ有此即

亦即两个波函数对应态矢正交.

二、计算题

3. 设一维粒子的HamiltonianH ,坐标算符为x. 利用利用能量本征态的完全性关系,

【答案】利用于是

4. 在自旋态【答案】

下,求在自旋态j

下:

和E. ,表出,其中

是能量本征值为E. ,的本征矢。

可得即

所以有:

5. —个自旋为1/2的粒子在三维各向同性的谐振子势中运动,求其基态和第一激发态的能量、波函数和相 应简并度。已知质量为的无自旋粒子在一维谐振子势(频率为)中运动的波函数为基态

第一激发态

【答案】三维各向同性的谐振子可作分离变量求解,分别为三个方向的一维谐振子运动的并合。 基态为三个方向都在基态,加上自旋自由度可得波函数为:

其中,于是可知能量为

为自旋波函数。 简并度等于

因此相应能量为相应简并度为6。

6. 质量为m 的粒子在宽度为a 的一维无限深势阱中运动. (a )建立适当的坐标系,写出哈密顿算符,求解定态薛定谔方程. (b )当粒子处于状态率. 其中(c )若上式的

分别是基态和第一激发态.

是t=0时刻的波函数,求粒子在其后任意时刻的波函数.

时,求测量粒子能量时的可能取得及相应的概

第一激发态为有一个方向处于第一激发态,故波函数为:

【答案】(a )如图建立坐标系,

设波函数当

哈密顿算符

满足薛定谔方程时,