2018年华中科技大学教育科学研究院312心理学专业基础综合之现代心理与教育统计学考研基础五套测试题
● 摘要
一、概念题
1. 无偏估计
【答案】无偏估计是评价估计量的好坏的一个指标。设参数则它表明对 估计量进行多次观测,其正负偏差趋于抵消,而平均取值正好是待估参数,则称
的无偏估计量。如样本均值
2. 总体
【答案】总体(population )又译“母体”,统计学术语,指一个统计问题中研宄对象的全体。由具有某种研宄特征的个体构成。从总体中抽取一部分个体,就构成总体的一个样本。如,研宄小学生的推理能力,记X 为每个小学生的推理能力,则X 的任一个可能取值是一个个体,X 的所有可能取值的集合则是一个总体。如果随机抽取n 个小学生,测量他们的推理能力为.Y .\这就是一个取自总体X 的样本。可根据包含个体的数目,可分为有限总体和无限总体。总体本身的大小是有限还是无限,取决于研宄问题的推理范围。心理学研宄中常为无限总体。在推断统计中被定义为一个随机变量,可运用概率论等数学工具进行统计推断。
3. 标准分数
【答案】标准分数指以标准差为单位的一种差异量数,又称Z 分数或基分数。它等于一数列中各原始分数与其平均数的差,再除以标准差所得的商,公式为:
数据的标准分数
,为原始数据的值,式中,Z 为某原始为该组数据的平均数,为该组数据的标准差。标准分是总体均值的无偏估计量。 为参数的估计量为若满足,数的平均数为0,标准差为1。标准分数是一种不受原始测量单位影响的数值,用来表示一个原始分数在团体中所处位置的相对位置量数。其作用除了能够表明原数据在其分布中的位置外,还能对未来不能直接比较的各种不同单位的数据进行比较。如比较各个学生的成绩在班级成绩中的位置或比较某个学生在两种或多种测验中所得分数的优劣。
4. 四分差
【答案】四分差又称四分位差,是差异量数的一种。计算公式:
位数,第三个四分第一个四分位数。在次数分配上第一个四分位数与第三个四分位数之间包含着全体项数的一半。次数分配越集中,离中趋势越小,则这二者的距离也越小。根据这两个四分位数的关系,观测次数分配的离散程度也可以得到相当高的准确性。因此,四分差可以说明某系列数据中
间部分的离散程度,并可避免两极端值的影响。四分差通常与中数联系起来共同应用,不适合进一步代数运算,反应不够灵敏。
二、简答题
5. 估计总体平均数落入该区间的正确可能性概率为1-«,犯错误的可能性概率为«。1. 在进行差异的显著性检验时,若将相关样本误作独立样本处理,对差异的显著性有何影响,为什么?
【答案】(1)在进行差异的显著性检验时,首先需要考虑样本是否服从正态分布,如果服从正态分布,还需要考虑总体方差是否已知,然后看样本是否是独立样本。若将相关样本误作独立样本处理,则忽视了样本数据之间的一致性,导致错误地运用计算公式,差异的显著性也会受到误估,使本来可能有显著差异变成无显著差异。
(2)因为相关样本与独立样本不同,会运用不同的计算方法计算显著性。相关样本与独立样本是根据两个样本是否来自同一个总体来划分的。
①如果是独立样本,其和(或差)的方差等于各自方差的和,即
在进行差异的显著性检验中采用以下公式:
②相关样本之间存在着一一的对应关系。如果是相关样本前后两次结果则相互影响,而不独立。当两个变量之间相关系数为r 时,两变量差的方差为:
在进行差异的显著性检验中采用以下公式:
由计算公式可以看出,独立样本和相关样本在进行差异的显著行检验时,使用了不同计算公式,相关样本的标准误可能会比独立样本的标准误小,使得计算出的Z 值大,从而更容易达到显著性水平,所以如果将相关样本误作独立样本处理,会使本来可能有显著差异变成无显著差异。
6. 回归分析与因素分析有什么区别?
【答案】因素分析又称因子分析,是处理多变量数据的一种统计方法,它可
以揭示多变量之间的关系,其主要目的是从为数众多的可观测的变量中概括和综合出少数几个
因子,用较少的因子变量来最大程度地概括和解释原有的观测信息,从而建立起简洁的概念系统,揭示出事物之间本质的联系。
7. 为什么要做区间估计?怎样对平均数作区间估计?
【答案】(1)做区间估计是因为
①当用点估计来对总体参数进行估计时,总是以误差的存在为前提,但又不能提供正确估计的概率。
这是由于点估计是用估计量的一个具体的数值作为待估参数的估计值,由于估计量是一个随机变量,所以点估计以随机变量中的某一个值来做估计,很显然会产生一定的误差。若误差较小,这个点估计值还是一个好的估计值,若误差较大,这个点估计便失去了意义。
②区间估计在一定意义上弥补了点估计的不足之处。
区间估计是根据估计量以一定可靠程度推断总体参数所在的区间范围,它是用数轴上的一段距离表示未知参数可能落入的范围,它虽不具体指出总体参数等于什么,但能指出未知总体参数落入某一区间的概率有多大。区间估计在点估计的基础上,不仅给出一个估计的范围,使总体参数包含在这个范围之内,而且还能给出估计精度并说明估计结果的有把握的程度。
(2)对平均数进行区间估计的步骤如下
①根据实得样本的数据,计算样本的平均数与标准差。 ②计算标准误
有两种情况:
a. 当总体方差
b. 当总体方差未知时,
用样本的无偏估计量即方差样本的有偏估计方差则
③确定置信水平或显著性水平。
④根据样本平均数的抽样分布,确定查何种统计表。
确定a=0.05或0.01的横坐标值。一般当总体方差已知时,查正态表;当样本方差未知时,查t 值表(当
时,也可查正态表作近似计算)。确定⑤计算置信区间。
a. 如果查正态分布表,置信区间可写作:
b. 如果查t 值表,置信区间则:
已知时,
计算,如果计算的是与
相关内容
相关标签