2017年西安石油大学932统计学考研复试核心题库
● 摘要
一、简答题
1. 给出在一元线性回归中:
(1)相关系数的定义和直观意义;
(2)判定系数的定义和直观意义;
(3)相关系数和判定系数的关系。
【答案】(1)相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。若相关系数是根据总体全部数据计算的,称为总体相关系数,记为
称为样本相关系数,记为r 。样本
相关系数的计算公式为:
按上述计算公式计算的相关系数也称为线性相关系数,或称为相关系数。r 仅仅是x 若是根据样本数据计算的,则与y 之间线性关系的一个度量,它不能用于描述非线性关系。这意味着,r=0只表示两个变量之间不存在线性相关关系,并不说明变量之间没有任何关系,它们之间可能存在非线性相关关系。变量之间的非线性相关程度较大时,就可能会导致r=0。因此,当r=0或很小时,不能轻易得出两个变量之间不存在相关关系的结论,而应结合散点图做出合理的答释。
(2)回归平方和占总平方和的比例称为判定系数,记为其计算公式为:
判定系数测度了回归直线对观测数据的拟合程度。
的取值范围是越接近于1, 表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用x 的变化来答释y 值变
差的部分就越多,回归直线的拟合程度就越好;反之,越接近于0, 回归直线的拟合程度就越差。
(3)相关系数和判定系数都是用来表明X 与Y 的关系,即X 对Y 的拟合程度。在一元线性回归中,相关系数实际上是判定系数的平方根。相关系数取值范围在卜之间。判定系数取值范围在[0, 1]之间。
2. 在多元线性回归中,为什么我们对整个回归方程进行检验后,还要对每个回归系数来进行检验呢?
【答案】在多元线性回归中,线性关系检验主要是检验因变量同多个自变量的线性关系是否显著,在个自变量中,只要有一个自变量与因变量的线性关系显著,F 检验就能通过,但这不一定意味着每个自变量与因变量的关系都显著。回归系数检验则是对每个回归系数分别进行单独的检验,它主要用于检验每个自变量对因变量的影响是否都显著。如果某个自变量没有通过检验,
就意味着这个自变量对因变量的影响不显著,也许就没有必要将这个自变量放进回归模型中了。
3. 多元线性回归模型中有哪些基本的假定?
【答案】多元回归模型的基本假定有:
(1)自变量
(3)对于自变
量
(4)误差项是一个服从正态分布的随机变量,且相互独立,即
4. “假设检验的基本思路是:概率性质的反证法,主要依据的是:小概率事件原理”。你同意这种说法吗?简要叙述你对假设检验的理解和检验步骤。
【答案】同意。
假设检验所遵循的推断依据是统计中的“小概率原理”:小概率事件在一次试验中几乎是不会发生的。例如,在10000件的产品中,如果只有1件是次品,那么可以得知,在一次试验中随机抽取1件次品的概率就为此概率是非常小的。或者是说,在一次随机抽样试验中,次品几乎是不会被抽到的。反过来,如果从这批产品中任意抽取1件,恰好是次品,我们就可以断定,该次品率应该不是很小的,否则我们就不会那么轻易的就能抽到次品。从而,我们就有足够的理由否认产品的次品率是很低的假设。
假设检验的基本步骤为:第一,对所考察总体的分布形式或总体的某些未知参数做出某些假设,称之为原假设。第二,根据检验对象构造合适的检验统计量,并通过数理统计分析确定在原假设成立的条件下该检验统计量的抽样分布。第三,在给定的显著性水平下,根据抽样分布得出原假设成立时的临界值,由临界值构造拒绝域和接受域。第四,由所抽取的样本资料计算样本统计量的取值,并将其与临界值进行比较,从而对所提出的原假设做出接受还是拒绝的统计判断。
假设检验就是利用样本中所蕴含的信息对事先假设的总体情况做出推断。假设检验不是毫无根据的,而是在一定的统计概率下支持这种判断。
5. 什么是方差分析?它与总体均值的检验或检验有什么不同?其优势是什么?
【答案】方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。总体均值的检验或Z 检验,一次只能研宄两个样本,如果要检验多个总体的均值是否相等,那么作这样的两两比较十分烦琐。而且,每次检验两个的做法共需进行
的检验,如果次不同每次检验犯第I 类错误的概率都是0.05, 作多次检验会使犯第I 类错误的概 是非随机的、固定的,且相互之间互不相关(无多重共线性); 的方
差都相同,且不序列相关,
即的所有
值(2)误差项是一个期望值为0的随机变量,即率相应增加,而方差分析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设。
方差分析不仅可以提高检验的效率,同时由于它是将所有的样本信息结合在一起,也増加了分析的可靠性。
6. 回归分析中的误差序列有何基本假定?模型参数的最小二乘估计
模型用于预测,影响预测精度的因素有哪些? 具有哪些统计特性?若
)。独立【答案】(1
)误差项是一个服从正态分布的随机变量,且独立,即
为0的随机变量,即线性函数;②无偏性
具有最小方差的估计量。 对于所有的值分别是的方差都相同。 性意味着对于一个特定的值,它所对应的与其他值所对应的不相关。误差项是一个期望值(2
)模型参数的最小二乘估计的统计特性:①线性,即估计量的无偏估计;③有效性为随机变量的是所有线性无偏估计量中
(3)影响预测精度的因素有:①预测的信度要求。同样情况下,要求预测的把握度越高,贝_应的预测区间就越宽,精度越低;②总体y 分布的离散程度越大,相应的预测区间就越宽,预测精度越低;③样本观测点的多少n 。n 越大,相应的预测区间就越窄,预测精度越高;④样本观测点中,解释变量x 分布的离散度。x 分布越离散,预测精度越高;⑤预测点离样本分布中心的距离。预测点越远离样本分布中心预测区间越宽,精度越低,越接近样本分布中心间越窄,精度越高。
区
二、计算题
7. —家紧急救护中心目前每天的值班护士人数相同。表1是2010年11月1日至2010年11月26日到紧急 救护中心的病人数(紧急救护中心周六,周日不营业),表2和表3分别是表1数据的描述统计和方差分析的结果。
根据表1、表2和表3中的数据和统计分析结果,请你替这家紧急救护中心的主任给他的上级主管部门撰写一份报告,阐明根据一周每天病人人数安排相应的值班护士人数的理由。
报告至少涵盖下面两项内容:
(1)一周中每天的病人人数是否存在差异?
(2)如果存在差异,哪些天似乎是最繁忙的?
相关内容
相关标签