当前位置:问答库>考研试题

2016年广东工业大学机电工程学院804运筹学考研必备复习题库及答案

  摘要

一、简答题

1. 试说明C 一W 节约算法的基本思想,你认为还可用它解决哪些方面的问题? 举例加以说明。

【答案】(1)C 一W 节约算法的基本思想(以旅行商问题为例):优先考虑将节约值最大的弧插入到旅行线路中, 这样在满足访问若干城市各一次且仅一次的条件下,最大限度地缩短了路程。 (2)举例。运用C 一W 节约算法:设n 个不同用户为n 个点,维修点为基点,n 个用户点中从点i 到点j 的 长度为工人骑摩托车的交通时间加上点i 与点j 维修时间总和的一半。优先考虑将节约值最大的长度加入工作线路中去进行迭代。

2. 什么是关于可行流f 的增广链?

【答案】设f 是一个可行流,v s 是网络的起点,v t 是网络的终点,

满足下列条件:

(l )在弧(2)在弧称是关于可行流f 的一条增广链。

3. 简述影子价格的经济含义。

【答案】影子价格的经济意义是在其他条件不变的情况下,单位资源变化所引起的目标函数的最优值的变化。影 子价格对市场具有调节作用,在完全市场经济的条件下,当某种资源的市场价低于影子价格时,企业应买进该资 源用于扩大生产; 而当某种资源的市场价高于企业影子价格时,则企业的决策者应把己有资源卖掉。

4. 考虑一个(线性)目标规划在计算机上求解的问题。假设手头只有一个线性规划的求解软件,想要仅仅 借助该软件来实现对目标规划的求解,请问你的策略是什么(不超过200字)?

【答案】想要仅仅借助该软件来实现对目标规划的求解,则应按如下步骤进行。

先以第一级目标为目标函数,以原来的约束为约束,求解一个线性规划; 其次,将己经实现的第一个目标作 为一个附加约束,以第二级目标为目标函数,再求解一个线性规划。以此类推,逐次求

,即可求出目标规划的满意解。 解k 个线性规划(k 为优先级的个数)

5. 试写出M/M/1排队系统的Little 公式。

【答案】M/M/1排队系统的Little 公式为

即即中每一前向弧是非饱和弧。 中每一后向弧是非零流弧。 是从v s 到v t ,的一条链,

一、简答题

1. 简述目标规划单纯形法求解的基本思想。

【答案】第一步,建立初始单纯形表,在表中将检验数行按优先因子个数分别列成K 行,置k=l; 第二步,检查该行中是否存在负数,且对应的前k 一1行的系数是零。若有负数取其中最小者对应的变量为换入变量,转第三步。若无负数。则转第五步;

第三步,按最小比值规则确定换出变量,当存在两个和两个以上相同的最小比值时,选取具有较高优先级别 的变量为换出变量;

第四步,按单纯形法进行基变换运算,建立新的计算表,返回第二步;

第五步,当k=K时,计算结束。表中的解即为满意解。否则置k=k+l,返回到第二步。 2. 简述对偶问题的“互补松弛性”。

【答案】互补松弛性:若仅当为最优解。 分别是原问题和对偶问题的可行解。那么,当且3. 考虑两个企业的资源整合问题。如果每个单位单独组织生产,各自的效益和,往往小于把两个单位的生 产要素进行重组,然后再统筹生产带来的收益高。因此,资产重组,往往能够带来“双赢”的格局,企业自身也 希望通过合并,做大做强。问题是,每个企业可能会故意夸大其利润水平,从而希冀分得更多的合作收益。请谈谈你的设想,用以协调 其中可能出现的问题(不超过300字,可用符号表述你的想法)?

【答案】让两个企业单独汇报独立生产能获得的利润,分别记为z 1、z 2。如果z 1+z2≦z 成之,则将

,按照z 1、z 2的比例进行分配。这样的分配方式,两个企业说真话,合作后的额外收益z-(z 1+z2)

是一个均衡策略。

4. 什么是可行流?

【答案】满足下列条件的网络流f 称为可行流

(l )容量限制条件:对每一弧(v i ,v j )

对于起点Vs ,记

对于终点V t ,记 (2)平衡条件 对于中间点,流出量=流入量,即对每个

式中,V (f )称为这个可行流f 的流量,即发点的净输出量(或收点的净输入量)。

5. 简述求解整数规划分枝定界法的基本思想。

【答案】设有最大化的整数规划问题A ,与它对应的线性规划为问题B ,从解问题B 开始,若其最优解不符合A 的整数条件,那么B 的最优目标函数必是A 的最优目标函数z*的上界,记作; 而A 的任意可行解的目标函数值将是z*的一个下界; 。分支定界法就是将B 的可行域分成子区