2017年上海师范大学数理学院892量子力学基础考研仿真模拟题
● 摘要
一、填空题
1. (1)体系处在用归一化波函数算符的本征函数系展开. 即
描述的状态. 且此波函数可以按力学量A 所对应的厄米认为
是归一的,则决定系数的表达式为_____。
_____。
(2)题(1)中设是算符的本征值,则力学量A 的平均值果的概率为_____。 【答案】(1)【解析】由题意考虑到正交归一化条件(2)
以及正交归一化条件
在上式两边乘以
有
并积分得
(3)题(1)中当对体系进行力学量A 测量时,测量结果一般来说是不确定的. 但测量得到某一结
【解析】由平均值定义式(3)
为确定
在上式两边乘以有
而概率应该为为定值.
2. 微观粒子的状态由波函数描述,波函数一般应满足的三个条件是_____、_____、_____。 【答案】连续性;有限性;单值性
3. 总散射截面Q 与微分散射截面
并积分得
考虑到正交归一化条件
有
【解析】由题意
的关系是_____。
【答案】
4. 费米子组成的全同粒子体系的波函数具有_____,玻色子组成的全同粒子体系的波函数具有_____。
【答案】对称性;反对称性
5. —个电子运动的旋量波函数为则表示电子自旋向上、位置在处
的几率密度表达式为_____,表本电子自旋向下的几率的表达式为_____。 【答案】
6. 对一个量子体系进行某一物理量的测量时,所得到的测量值肯定是_____当中的某一个,测量结果一般来说是不确定的. 除非体系处于_____。 【答案】本征值;定态
【解析】物理量的测量值应该对应其本征值,对于非定态,由于它是各个本征态的混合态,这就导致物理量的测量值可以是它的各个本征值,测得各个本征值满足一定概率分布,只有当体系处于定态,即位于该物理量对应的本征态,测得值才有可能为确定值.
二、简答题
7. 反常塞曼效应的特点,引起的原因。 【答案】原因如下:
(1)碱金属原子能级偶数分裂; (2)光谱线偶数条;
(3)分裂能级间距与能级有关;
(4)由于电子具有自旋。
8. 以能量这个力学量为例,简要说明能量算符和能量之间的关系。 【答案】在量子力学中,能量
用算符表示,
当体系处于某个能量态
的作用是得到这一本征值,即
当体系处于一般态
的本征态
时,算符对
的作
时,算符对态
,即用是得到体系取不同能量本征值的几率幅(从而就得到了相应几率)
9. 斯特恩—革拉赫实验证明了什么? 【答案】(1)半整数内禀角动量在存在。 (2)空间量子化的事实。
(3)电子自旋磁矩需引入2倍关系。
10.厄米算符的本征值与本征矢分别具有什么性质? 【答案】本征值为实数,本征矢为正交、归一和完备的函数系。
11.什么是塞曼效应?什么是斯达克效应?
【答案】塞曼效应是原子在外磁场中光谱发生分裂的现象;斯达克效应是原子在外电场作用下光谱发生分裂的现象。
12.放射性指的是束缚在某些原子核中的更小粒子有一定的概率逃逸出来,你认为这与什么量子效应有关?
【答案】与量子隧穿效应有关。
13.将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据
对波函数的统计解释,描写体系量子状态的波函数是概率波,由于
粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。
14.电子在位置和自旋表象下,波函数【答案】
利用
的几率密度;
表示粒子在
如何归一化?解释各项的几率意义。
进行归一化,其中
:
处
的几率密度。
表示粒子在
|
处
三、计算题
15.两个自旋为
的非全同粒子构成一个复合体系,设两个粒子间的相互作用为
其中c 为
实常数。设t=0时粒子1的自旋沿z 轴的正方向,粒子2的自旋沿z 轴的负方向,要求: (1)给出H 的本征值,并给出t >0时体系处的状态【答案】(1)体系的哈密顿算符为:
在稱合表象中,本征函数的编号选为:
哈密顿算符在耦合表现中的矩阵形式为:
(2)给出t >0时,测量粒子1的自旋仍处在z 轴正方向的几率。
则可知的本征值为:
依题意可知,初态波函数为:
这样,可以给出t >0时体系处的状态
为: