2017年华中科技大学管理学院885运筹学(一)[专业硕士]考研题库
● 摘要
一、简答题
1. 试写出求解最短径路的Dijkstra 算法的步骤。
【答案】Dijkstra 算法的步骤为:
(l )给v s 以p 标号,P (v S )二0,其余各点均给T 标号,T (v i )=+∞。
(2)若v i 点为刚得到P 标号的点,考虑这样的点v i ,(v i ,vj )属于E ,且v i 为T 标号。对v j 的T 标号进行如下修改:T (v j )=min[T(v i ),p (v i )+lij ]
(3)比较所有具有T 标号的点,把最小者改为P 标号,即: 当存在两个以上最小者时,可同时改为P 标号。若全部点均为P 标号时停止,否则用代V i 转回(2)。
2. 简述求解最小费用最大流的赋权网络设置方法。
,有可行流f ,保持原网络各点, 【答案】解:对网络G=( V ,E ,C ,d )
每条边用两条方向相反的有向边代替,各边的权
②当边(vj 名)为原来G 中边(vi ,vj )的反向边,令
3. 对在多台设备上加工多个工件的工件排序问题来说,应如何衡量不同排序方案的优劣? 你认为应有哪 些准则? 这些准则的适用条件是什么? 请举出两个实例加以详细说明。
【答案】(l )应根据工期最短、成本最低、质量最优等优劣标准来衡量不同排序方案的优劣。
(2)设备充分利用、总加工时间最短等某一或某几种目标函数最优。
(3)每个工件在m 台设备加工都有一定的先后顺序,工件在不同设备的加工顺序不同的情况不作考虑以及 信息掌握情况和资源约束等适用条件。
(4)举例。建筑施工流水作业问题:在不同的施工段上按一定的施工工艺进行施工,而施工工艺又由不同 的施工工序组成,每道施工工序都要消耗一定的人工费用,机械台班和材料费用,并且某些施工工序之间有一定的先后约束关系,如支起模板后才能浇注混凝土,而此问题关注不
使整个施工按照最短施工时间保持一定施工节拍进同施工工序如何搭接排序组成一定施工工艺,
行流水作业,同时消耗人、机、材等资源也合理。
4. 什么是启发式方法? 说明用启发式方法解决实际问题的过程和步骤。
【答案】(1)对于结构不良问题,为得到近似可用的解,分析人员必须运用自己的感知和洞
按如下规则:
察力,从与其有关而 较基本的模型与算法中寻求其间的联系,从中得到启发,去发现适于解决该问题的思路和途径,这种方法称为启 发式方法。
(2)用启发式方法解决实际问题的过程和步骤:①系统观察和分析实际问题; ②抽象并明确提出问题; ③ 建立启发式数学模型; ④选择启发式策略,设计启发式方法,按照一定的搜索规则反复迭代逼近模型最优可行解,直到得到满意解; ⑤检验和修正模型及其满意解。
二、证明题
5. 证明:矩阵对策
的鞍点不存在的充要条件是有一条对角线的每一个元素均大于另一对角线上的每一个元素。
【答案】(l )先证充分性,要使鞍点存在,就必存在有 ①
可假设主对角线的每一个元素均大于次对角的每一个元素,即
使对一切,
则充分性得证。
(2)证必要性。假设“有一条对角线的每一个元素均大于另一条对角线上的每一个元素”这种情形不存在,则可设
又可假设
其他情形同理可类推得出存在鞍点,由命题与逆否命题等价可知必要性成立.
6. 证明:设,则为G 的解的充要条件是:存在数
。(本章定理4)
,使得和分别是不等式组(I )和(II )的解,且
【答案】(l )先证充分性。由于x*是不等式组(I )的解,且
又由于是不等式组的解,且
②
由式①和式②,可知
故由教材第390页的定理3可知,(X ,Y )为G 的解。 **则
,
**(2)再证必要性,由于(X ,Y )为G 的解,所以有
,因此X 和Y 分别是不等式组(I )和 ()**
的解,且v=VG 。
7. 在M/M/1/N/∞模型中,如,试证
应为,于是。
【答案】系统在t 时刻的顾客数N (t )仍是一生灭过程,且有
当t=+∞时,由系统的稳定状态概率可得
相关内容
相关标签