2017年昆明理工大学机电工程学院813运筹学考研强化模拟题
● 摘要
一、填空题
1. 对于线性规划问题:MaxZ=CX.AX≦b.X ≧0,若B=(P 1,P 2,…,P m )为A 中m 个线性无关的列向量, 且为该LP 的一个可行基,则对应于基B 的基可行解为:_____,该基可行解为最优解的条件是:_____。
【答案】
,对于一切
有
。
【解析】若B=(P 1,P 2,…,P m )为A 中m 个线性无关的列向量,
此时令非基变量
, 这时变量的个数等于线性方程组的个数,用高斯消去法,可求得对应
于基B 的基可行解
为
。由最优解的判别定理,若对于一
切
, 则所求得的基可 行解为最优解。
2. 某整数规划模型,解其松弛问题得到最优解。若其中某分量x j 二场为非整数,用分支定界法求解时,针对 该分量构造的两个约束条件应为:_____。
【答案】
【解析】由分支定界法的原理可以,良容易得至“结果,其中〔b j 〕为不大于bj 的最大整数。
3. 最速下降法的搜索方向_____。
牛顿法的搜索方向为_____。 拟牛顿法的搜索方向为_____。 【答案】
【解析】最速下降法:
可以得出,
当
时,下降最快。
牛顿法:正定二次函
数
即搜索方向是
拟牛顿法
:
(单位阵)
4. Fibonacoi 法在[2,6]区间上取的初始点是_____。
【答案】
,
若
是最优点,
则
【解析】由Fibonacci 的计算方法可知。
二、证明题
5. 己知九个人v 1,v 2,…,v 9中v 1和两个人握过手,v 2和v 3各和四个人握过手,v 4,v 5,v 6,v 7各和五个人握过手,v 8,v 9各和六个人握过手,证明这九个人一定可以找出三人互相握过手。
【答案】该问题可表述为一个包含9个点(每个人代表一个点)的图的问题。依题意知 d (v l )=2,d (v 2)=d(v 3)=4,d (v 4)=d(v 5)=d(v 6)=d(v 7)=5,d (v 8)=d(v 9)=6 其中,边v i ,v j 代表v i 和v j 握过手。对于v 9,因为d (v 9)=6,所以v 4,v 5,v 6,v 7中至少有两个点与v 9之间 存在连线,设该两点为v 4和v 5。假设与v 4和与v 9相连的其他五点之间无边,
则
,与已知的 d (v 4)=5相矛盾,故假设不成立。即v 4与上述五点间必存在至少
两条边,设其中一点为v k ,则v k ,v 4,v 9两两相连,即存在三人之间互相握过手。
6. 称顾客为等待所费时间与服务时间之比为顾客损失率,用R 表示。
(l )试证:对于M/M/1模型,(2)在上题中,设
不变而
。
是可控制的,试定
使顾客损失率小于4。
证毕。
时,顾客损失率小于4。
【答案】(l )对于M/M/1模型, (2)由 7. . 令试证
【答案】
,得
。由定义,有
,所以当
,A 为为一组A 共轭向量(假定为列向量)对称正定矩阵,
为一组A 共轭向量,它们必线性无关。则
使得
。
用左乘上式,并且由共轭关系可知:
令由
知BA=E,所以故得证。
。
8. 证明:矩阵对策
的鞍点不存在的充要条件是有一条对角线的每一个元素均大于另一对角线上的每一个元素。 【答案】(l )先证充分性,要使鞍点存在,就必存在有
①
可假设主对角线的每一个元素均大于次对角的每一个元素,即
使对一切
,
则充分性得证。
(2)证必要性。假设“有一条对角线的每一个元素均大于另一条对角线上的每一个元素”这种情形不存在,则可设
又可假设
其他情形同理可类推得出存在鞍点,由命题与逆否命题等价可知必要性成立.
三、计算题
9. 有一运输问题,它有3个重载点和2个车场,其运输表如表所示。表中小方框内的数字为两1、2和3三项运输业务的重载里程点 间的车辆空驶距离,(己将装卸车时间折算在内)分别为7,8和9,其他有关情况如表中所示。此外,要求车辆的每条行车路线总长度(包括重驶、空驶及装卸车所用时间的折算长度)L 在45~ 60之间。试用本章给出的车辆优化调度启发式算法,求出其满意的可接受可行解,并据此排出行车路线。
表
相关内容
相关标签