● 摘要
ZnO是一种新型的II-VI族直接带隙化合物半导体,禁带宽度为3.37eV,激子束缚能为60meV,具有六方纤锌矿结构。ZnO薄膜具有广泛的应用,如ZnO薄膜可以制成表面声波谐振器、压电器件、压敏器件、透明电极、气敏传感器、导电膜等。近年来,随着短波器件的广泛应用,直接宽带半导体材料的研究越来越受人们的重视,对氧化锌薄膜材料的研究和开发在国内外科学界及工业部门引起了极大的关注和兴趣。
ZnO薄膜制备的主要方法有:磁控溅射、金属有机化学气相沉积、脉冲激光沉积、分子束外延、电子束蒸发沉积、喷雾热分解、溶胶-凝胶法、薄膜氧化法等。各种方法各有优缺点。根据需要制备相应的高质量的薄膜是ZnO薄膜应用的关键,同时制备成本也是必须考虑的重要因素。通常认为理想ZnO薄膜具有高的c轴择优取向。磁控溅射在最佳条件下可以得到均匀、致密、有良好的c轴取向性和可见光波段透明性好等优点的薄膜,使得它成为在ZnO制备中研究最多并且使用最广泛的方法。本课题采用RF反应磁控溅射制备了ZnO薄膜并对其进行探索性研究。研究内容主要包括:射频磁控溅射工艺条件对ZnO薄膜结构特性和表面形貌的影响、对ZnO薄膜光学特性的影响,以及ZnO发光机理的探讨。薄膜的结构特性用XRD进行了分析,薄膜的表面形貌通过原子力显微镜进行表征,薄膜的透射光谱用紫外-可见双光束分光光度计进行测量,发光性质用光栅光谱仪进行了分析。
研究结果表明利用射频磁控溅射法工艺,在功率为100W,真空度为2×10-4Pa,靶基距为70mm左右,溅射时间为60分钟,基片为单面抛光的(100)硅片,基片温度200℃、氩氧比为2:3的条件下得到了结晶质量良好的ZnO薄膜;通过退火可以使薄膜应力得到驰豫,降低缺陷浓度,改善薄膜的结构特性。本实验采用射频磁控溅射的方法,探索出制备ZnO薄膜的最佳工艺条件,最终在(100)硅衬底基片上制备出了较高c轴取向的ZnO薄膜。但是由于试验条件限制,在发光试验的测试中,我们只观察到了在350nm处的一个明显的发射峰和在480nm处的微弱的峰,对此本文也进行了探索性分析。
ZnO是一种新型的II-VI族直接带隙化合物半导体,禁带宽度为3.37eV,激子束缚能为60meV,具有六方纤锌矿结构。ZnO薄膜具有广泛的应用,如ZnO薄膜可以制成表面声波谐振器、压电器件、压敏器件、透明电极、气敏传感器、导电膜等。近年来,随着短波器件的广泛应用,直接宽带半导体材料的研究越来越受人们的重视,对氧化锌薄膜材料的研究和开发在国内外科学界及工业部门引起了极大的关注和兴趣。
ZnO薄膜制备的主要方法有:磁控溅射、金属有机化学气相沉积、脉冲激光沉积、分子束外延、电子束蒸发沉积、喷雾热分解、溶胶-凝胶法、薄膜氧化法等。各种方法各有优缺点。根据需要制备相应的高质量的薄膜是ZnO薄膜应用的关键,同时制备成本也是必须考虑的重要因素。通常认为理想ZnO薄膜具有高的c轴择优取向。磁控溅射在最佳条件下可以得到均匀、致密、有良好的c轴取向性和可见光波段透明性好等优点的薄膜,使得它成为在ZnO制备中研究最多并且使用最广泛的方法。本课题采用RF反应磁控溅射制备了ZnO薄膜并对其进行探索性研究。研究内容主要包括:射频磁控溅射工艺条件对ZnO薄膜结构特性和表面形貌的影响、对ZnO薄膜光学特性的影响,以及ZnO发光机理的探讨。薄膜的结构特性用XRD进行了分析,薄膜的表面形貌通过原子力显微镜进行表征,薄膜的透射光谱用紫外-可见双光束分光光度计进行测量,发光性质用光栅光谱仪进行了分析。
研究结果表明利用射频磁控溅射法工艺,在功率为100W,真空度为2×10-4Pa,靶基距为70mm左右,溅射时间为60分钟,基片为单面抛光的(100)硅片,基片温度200℃、氩氧比为2:3的条件下得到了结晶质量良好的ZnO薄膜;通过退火可以使薄膜应力得到驰豫,降低缺陷浓度,改善薄膜的结构特性。本实验采用射频磁控溅射的方法,探索出制备ZnO薄膜的最佳工艺条件,最终在(100)硅衬底基片上制备出了较高c轴取向的ZnO薄膜。但是由于试验条件限制,在发光试验的测试中,我们只观察到了在350nm处的一个明显的发射峰和在480nm处的微弱的峰,对此本文也进行了探索性分析。
ZnO是一种新型的II-VI族直接带隙化合物半导体,禁带宽度为3.37eV,激子束缚能为60meV,具有六方纤锌矿结构。ZnO薄膜具有广泛的应用,如ZnO薄膜可以制成表面声波谐振器、压电器件、压敏器件、透明电极、气敏传感器、导电膜等。近年来,随着短波器件的广泛应用,直接宽带半导体材料的研究越来越受人们的重视,对氧化锌薄膜材料的研究和开发在国内外科学界及工业部门引起了极大的关注和兴趣。
ZnO薄膜制备的主要方法有:磁控溅射、金属有机化学气相沉积、脉冲激光沉积、分子束外延、电子束蒸发沉积、喷雾热分解、溶胶-凝胶法、薄膜氧化法等。各种方法各有优缺点。根据需要制备相应的高质量的薄膜是ZnO薄膜应用的关键,同时制备成本也是必须考虑的重要因素。通常认为理想ZnO薄膜具有高的c轴择优取向。磁控溅射在最佳条件下可以得到均匀、致密、有良好的c轴取向性和可见光波段透明性好等优点的薄膜,使得它成为在ZnO制备中研究最多并且使用最广泛的方法。本课题采用RF反应磁控溅射制备了ZnO薄膜并对其进行探索性研究。研究内容主要包括:射频磁控溅射工艺条件对ZnO薄膜结构特性和表面形貌的影响、对ZnO薄膜光学特性的影响,以及ZnO发光机理的探讨。薄膜的结构特性用XRD进行了分析,薄膜的表面形貌通过原子力显微镜进行表征,薄膜的透射光谱用紫外-可见双光束分光光度计进行测量,发光性质用光栅光谱仪进行了分析。
研究结果表明利用射频磁控溅射法工艺,在功率为100W,真空度为2×10-4Pa,靶基距为70mm左右,溅射时间为60分钟,基片为单面抛光的(100)硅片,基片温度200℃、氩氧比为2:3的条件下得到了结晶质量良好的ZnO薄膜;通过退火可以使薄膜应力得到驰豫,降低缺陷浓度,改善薄膜的结构特性。本实验采用射频磁控溅射的方法,探索出制备ZnO薄膜的最佳工艺条件,最终在(100)硅衬底基片上制备出了较高c轴取向的ZnO薄膜。但是由于试验条件限制,在发光试验的测试中,我们只观察到了在350nm处的一个明显的发射峰和在480nm处的微弱的峰,对此本文也进行了探索性分析。
相关内容
相关标签